

Revised Concept Design Report for Replacement of Port Orchard Marina North and East Breakwaters

Produced By:

October 30, 2019

The engineering material and data contained in this report were prepared under the supervision and direction of the undersigned, whose seals as registered professional engineers are affixed below.

Woosuk "Willy" Ahn, Ph.D, P.E., LEED[®] AP Civil Engineer Patrick Vasicek, P.E., LEED[®] AP Civil Engineer

Proprietary Notice: The contents of this document are proprietary to Art Anderson Associates and Reid Middleton, Inc., and intended solely for use by our clients and their design teams to evaluate Art Anderson's and Reid Middleton's capabilities and understanding of project requirements as they relate to performing the services proposed for a specific project. Copies of this document or its contents may not be disclosed to any other parties without the written consent of Art Anderson Associates and Reid Middleton, Inc.

Disclaimer: Any electronic form, facsimile, or hard copy of the original document (e-mail, text, table, and/or figure) if provided, and any attachments are only a copy of the original document. The original document is stored by Art Anderson Associates and Reid Middleton, Inc., and will serve as the official document of record.

Copyright © 2019 by Art Anderson Associates and Reid Middleton, Inc. All rights reserved.

Concept Design for Replacement of Port Orchard Marina North & East Breakwaters 10/30/2019

Table of Contents

Executive Summary
Background3
Basis of Design
Concept Design Summary5
Codes and References
Datum5
Water Levels
Service Life6
Material Properties6
Foundations and Soils6
Loads6
Port Orchard Marina Breakwater Concept Design Alternatives9
Opinion of Probable Construction Cost19
Project Schedule21
Trade-Off Analysis of Alternatives23
Trade-Off Analysis Criteria23
Grading Standards for Quantitative Analysis25
Evaluation Values for Each Alternative26
Quantitative Values for Each Alternative
Summary and Recommendations

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

Executive Summary

In 2017, a preliminary concept design of the new breakwaters that will replace the aged north and east breakwaters at the Port Orchard Marina was developed. This preliminary concept design of the new breakwaters was based on the preferred alternative selected in the Value Engineering (VE) study performed from July 24 to July 27, 2017. Valuable elements of the design are the float section and mooring system. Heavy-duty 12' wide concrete float sections could have a service life of more than 50 years in the marine environment with minimum maintenance. A new mooring line system or guide pile system would replace the aged mooring line and anchor pile system. The summary report in Reference A was revised in 2019 to include a new Appendix C.

In 2019, the Port commission decided that it was desirable to reconsider replacing the Port Orchard Marina Breakwater with one like that which was installed in 2008 at the Bremerton Marina – a 25 ft wide breakwater. This would allow for greater usage of the breakwater as an amenity for the community and community events. In this revised report, the 5 alternatives were revisited in the context of using interstitial guide piles for alternatives 3 and 4, and updated cost estimates for revised alternatives 0, 1 and 2. Four additional alternatives, 5 to 8 were added and analyzed for a 20' wide pontoon concept and a 25' wide pontoon concept, using both interstitial guide piles and cable mooring systems. Table 1 is a matrix summarizing all considered breakwater alternatives

	Float Width	Float Depth	Mooring System	Wall Thickness	Notes
Alt 0	12'	5.75′	Cable mooring with stake piles	4" top deck, 3" sides and bottom	Replace floats and mooring to meet current codes.
Alt 1	12'	5.75′	Cable mooring with stake piles	4" top deck, 3" sides and bottom	Replace floats to meet current codes, replace 25% of failing stake piles. No longer a viable option.
Alt 2	12'	5.75′	Cable mooring with stake piles	5" top deck, 4" sides and bottom	Replace floats and stake piles with upgraded, higher capacity versions.
Alt 3	12'	5.75′	30"x1" guide piles	5" top deck, 4" sides and bottom	Upgraded floats. Interstitial guide piles on inside, external pile hoops on outside.
Alt 4	12'	5.75'	30"x1" guide piles	4" top deck, 3" sides and bottom	Replace floats to meet current codes. Interstitial guide piles on inside, external pile hoops on outside.
Alt 5	25'	5.25'	30"x1" guide piles	5" top deck, 4" sides and bottom	Upgraded, wider floats. Interstitial pile guide piles on both sides.

Table 1: Alternatives Comparison Matrix

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

	Float Width	Float Depth	Mooring System	Wall Thickness	Notes
Alt 6	25'	5.25′	Cable mooring with stake piles	5" top deck, 4" sides and bottom	Upgraded, wider floats. Use cable mooring with stake piles.
Alt 7	20'	5.75′	30"x1" guide piles	5" top deck, 4" sides and bottom	Upgraded, wider floats. Interstitial guide piles on both sides.
Alt 8	20'	5.75′	Cable mooring with stake piles	5" top deck, 4" sides and bottom	Upgraded, wider floats. Use cable mooring with stake piles.

A second Concept design review meeting, which included some Value Engineering effort, was held on 22 October 2019. The focus of this meeting was to get the design team all up to speed on the revised and new options considered, provide comments on these alternatives and the construction cost estimates, and the ultimate trade off analysis conducted in the draft report. Based on the results of the meeting, summarized in Appendix B, Alternative 2 was recommended for execution. Alternative 2 uses 12' wide floats with thicker walls for increased live load capacity and longevity, a deeper section for greater wave attenuation, and cable mooring with stake pile anchors.

In Appendix D, three alternatives were developed for consideration as a separate project to address the current ADA access deficiencies to the East and North Breakwater. Based on the lowest cost, the recommendation is to implement Option #3 as soon as funding can be made available and design completed.

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

Background

The existing north and east breakwaters have protected vessels moored at the Port Orchard Marina for more than 46 years and now have damage to the concrete floats. The damage includes delamination, cracks, and spalls, which have resulted in saturation of the styrene foam inside the floats, lowering the freeboard. Therefore, the breakwater floats have been repaired by mortar patching and the addition of bladder units. These types of repairs are only temporarily effective in maintaining the desired freeboard and keeping the breakwaters functional, and it will not extend the service life of the breakwater. Furthermore, addition of bladder units to raise the float freeboard may subject mooring lines and stake piles to higher marine environmental loads than the design maximum. The effectiveness of thin concrete wall patch repair (especially underwater) and addition of bladder units is quite limited for a damaged and saturated float. Considering the typical 25-year service life of a marine structure, including light-duty breakwaters similar to the Port Orchard Breakwaters, the existing north and east breakwaters are overaged and have no effective long-term repair solutions. Therefore, it is necessary to plan for the replacement of the breakwaters to continue to protect the marina and provide waterfront access to the public. Figure 1 in Reference A shows a historical plan for installations and modifications of various Port Orchard Marina facility components including the breakwaters.

A value engineering study to evaluate five alternatives to replace the existing breakwaters was performed from July 24 to July 27, 2017. Three of the alternatives involved different mooring system options (reuse existing mooring lines and stake piles, new mooring lines and stake piles, and heavier float with new stake piles), and two of the alternatives involved concrete float options using a guide pile mooring system The preferred alternative consists of a new heavy-duty concrete float, with an expected service life of 50 years, and an upgraded cable mooring system. A preliminary concept design of the breakwaters based on the selected preferred alternative was developed to meet the main design criteria, which are to maintain the same footprint as the existing, to have a 50-year service life, and to have a minimum 18-inch freeboard under dead load. This effort was documented in reference A, originally in 2017, but then amended to include appendix C in June of 2019.

In 2019, the Port Commission decided that there was a desire to explore the possibility of replacing the Port Orchard Marina Breakwater with a wider float system, thus allowing for greater potential use of the Port Orchard Marina as a park amenity for the City, much like the Bremerton Marina Breakwater serves the City of Bremerton since it was built in 2008. The new breakwater should also be capable of handling temporary mooring of the cruise ships as is currently being carried out at the Bremerton Breakwater.

It was decided that two new float sections, 25' and 20' wide floats, would be designed to the concept level, and that both sections would be designed/analyzed for both a new interstitial guide pile system and a cable mooring system. In addition, Alternatives 3 and 4 in reference A would be revised to include interstitial guide piles, and the cost estimates for alternatives 0, 1 and 2 would be updated. Concept designs of all the nine resulting alternatives were developed with supporting concept level calculations and construction cost estimates, and the below report summarizing the results of the analysis was prepared for another Concept Design Review meeting conducted on October 22, 2019. Minutes of that meeting are included in Appendix A.

Concept Design for Replacement of Port Orchard Marina North & East Breakwaters

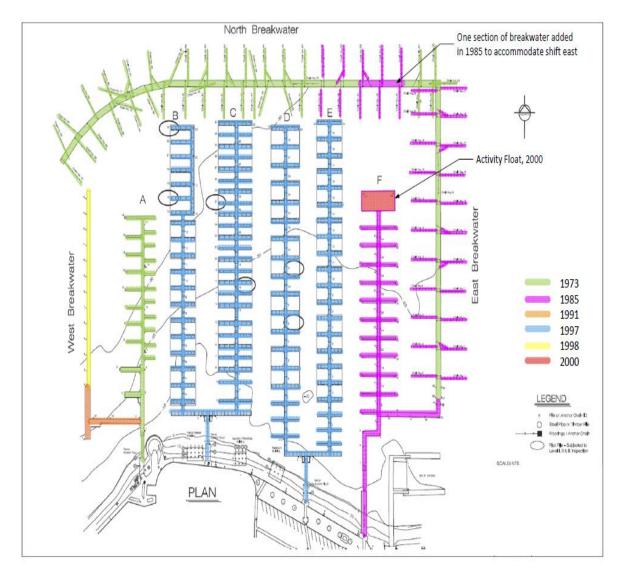


Figure 1 - Port Orchard Marina Historical Plan

Basis of Design

Concept Design Summary

Preliminary conceptual design for replacement of the North and East Breakwaters at Port Orchard Marina mainly includes design of typical section of the breakwater and guide piling system for the breakwater floats.

Codes and References

- 2016 Sea Level Rise and Coastal Flood Risk Summary for Kitsap County, Climate & Central
- 2012 and 2015 International Building Code
- 2010 Department of Justice ADA Standards for Accessible Design
- 2012 AASHTO LRFD Bridge Design Specifications
- ACI 318-11 Building Code Requirements for Structural Concrete
- AISC 325-11 Steel Construction Manual, 14th Edition (2011)
- ASCE/SEI 7-10 Minimum Design Loads for Buildings and Other Structures
- AWS D1.1-2010 Structural Welding Code Steel
- Shore Protection Manual, SPM 2002, U.S. Army Coastal Engineering Research
- UFC 4-152-01 Unified Facilities Criteria Design: Piers and Wharves
- UFC 4-152-07N DOD Design: Small Craft Berthing Facilities
- UFC 4-159-03 DOD Design: Moorings
- Bremerton Marina Expansion, Breakwater Fabrication Package, Port of Bremerton, 2006
- Study for Bremerton Marina, Pacific International Engineering, 2003
- Marine Structures Engineering Specialized Applications, G. P. Tsinker, 1995

Datum

Vertical: MLLW

Water Levels

Tide	Elevation (ft, MLLW)
Highest Estimated Tide (HET)	+15.20
Mean Higher High Water (MHHW)	+ 11.74
Mean High Water (MHW)	+10.87
Mean Low Water (MLW)	+2.83
Mean Lower Low Water (MLLW)	0.00
Lowest Estimated Tide (LET)	-5.00

10/30/2019

Service Life

50 years

Material Properties

Structural Steel

Wide Flanges	ASTM A992, Grade 50
Plates	ASTM A572, Grade 50
Angles and Channels	ASTM A36
Rods	ASTM A36
Pipe Pile	ASTM A252, Grade 3 Mod, F _y =60 ksi
	API 5L-X60, F _y =60 ksi
Tubes	ASTM A500, Grade B, f _y = 46 ksi
Bolts	ASTM A325 {ASTM A490}, A307, F593, A193
Welding Electrodes	E70XX

Aluminum

Aluminum gangway, guardrail, and transition plate shall be alloy 6061-T6 or 6063-T5.

Concrete

Normal-weight concrete (average 150 pcf)Minimum compressive strength:6,000 psiMaximum water/cement (binder) ratio: 0.4

Foundations and Soils

Piles

Float Guide Pile: 30" diameter x 1" wall thickness steel pipe piling

Loads

Live Loads

Breakwater Float	60 psf uniform or 400 pound concentrated
Transition Plate	100 psf uniform or 400 pound concentrated

Wind Loads

Basic Wind Speed for Moorage Condition	98 mph
Exposure Category	С

Concept Design for Replacement of Port Orchard Marina North & East Breakwaters

10/30/2019

Wind Generated Wave

Significant wave height, H _s		3.1 ft
Wave Period, T		3.5 sec
Vessel Wake		
Wake (Ferry): height, H _w		2.0 ft
Wake Period, T	3.7 sec	
Tidal Current		
Current Speed:	0.1 kno	t

Sea Level Rise

Sea Level Rise: 4 ft. above MHHW (EL=+11.74) = +15.74

Design Vessel (Temporary Berth – Cruise Ship)

Vessel Length (LOA): 268 ft Vessel Length (waterline): 246 ft Vessel Beam: 55 ft Vessel Displacement: 1217 net tons Profile Height: 65 ft Design Draft: 9 ft Superstructure Wind Area: 6,923 SF Hull Wind Area: 3,743 SF Number of Vessels along the Breakwaters: One at a time Length of stay: 1 Night Berthing Speed (Normal to Berth): 1 fps

Design Vessel (Permanent Berths)

Vessel Length: 100 ft Vessel Beam: 33 ft Vessel Displacement: 720 long ton Profile Height: 20 ft Number of Vessels along the Breakwaters: Continuous Berthing Speed (Normal to Berth): 1 fps

New Breakwater Float Section

Width:12 ft (same footprint as existing),25 ft. (same width as that of existing Bremerton Breakwater),

10/30/2019

20 ft. (same width as that of previous (pre-2008) Bremerton Breakwater)

Minimum Length of Individual Float: 100 ft. long for 12 ft. wide breakwater and 50 ft. long for 25 ft. or 20 ft. wide breakwater. Individual float pontoons shall be rigidly connected by post-tensioning strands or rods.

Freeboard (under dead load): minimum 18 inches

Freeboard (under full live load): minimum 10 inches

Filled Material for Buoyancy: Coated EPS (Expanded Poly-Styrene) Foam

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

Port Orchard Marina Breakwater Concept Design Alternatives

Alternative concept designs considered in the Design Review Meeting and developed in this report include:

Alternative #0

Replace floats (12' wide, 5.75' deep) and stake piles to meet current codes. Concrete float with 4" top deck and 3" concrete walls on sides and bottom.

Alternative #1

Replace floats to meet current codes (12' wide, 5.75' deep) and only replace 25% stake piles (failing). Concrete float with 4" top deck and 3" concrete walls on sides and bottom. It was determined in the calculations included in appendix A that this alternative is no longer viable as the existing stake piles will not be able to withstand the forces absorbed by the deeper floats. This alternative was retained in the spreadsheets but evaluated with a Life cycle of zero to indicate it non-viability.

Alternative #2

Replace floats and stake piles with upgraded versions (12' wide, 5.75' deep) –Concrete float with 5" top deck and 4" concrete walls on sides and bottom and higher capacity stake piles.

Alternative #3

Replace floats with upgraded versions (12' wide, 5.75' deep) and replace stake piles with interstitial guide pile systems. Concrete float with 5" top deck and 4" concrete walls on sides and bottom and 30" diameter, 1" wall steel guide piles with interstitial pile hoops on one side only.

Alternative #4

Replace floats to meet current codes (12' wide, 5.75' deep) and replace stake piles with interstitial guide pile systems. Concrete float with 4" top deck and 3" concrete wall on sides and bottom and 30" diameter, 1" wall steel guide piles with interstitial pile hoops on one-side only.

Alternative #5

Replace floats with wider, upgraded versions (25' wide, 5.25' deep) and replace stake piles with interstitial guide pile systems on both sides of each float. Concrete float with 5" top deck and 4" concrete walls on sides and bottom and 30" diameter, 1" wall steel guide piles with interstitial pile hoops on each side.

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

Alternative #6

Replace floats with wider, upgraded versions (25' wide, 5.25' deep) and replace stake piles upgraded stake pile system. Concrete float with 5" top deck and 4" concrete walls on sides and bottom and upgraded stake piles and cable mooring system.

Alternative #7

Replace floats with wider, upgraded versions (20' wide, 5.75' deep) and replace stake piles with interstitial guide pile systems on both sides of each float. Concrete float with 5" top deck and 4"concrete walls on sides and bottom and 30" diameter, 1" wall steel guide piles with interstitial pile hoops on each side.

Alternative #8

Replace floats with wider, upgraded versions (20' wide, 5.75' deep) and replace stake piles upgraded stake pile system. Concrete float with 5" top deck and 4" concrete walls on sides and bottom and upgraded stake piles and cable mooring system.

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

12' Wide Cable Moored Breakwater Alternatives – Mooring Installation Plans/Float Cross-Section

Alternatives #0 through #4 all use 12' wide sections like the existing floats at the Port Orchard Marina breakwater, except that the pontoons to be built in these new alternative designs are completely enclosed concrete boxes. Alternatives #0, #1 and #2, all utilize cable/chain mooring systems. Typical section of breakwater and installation of breakwater plan are shown in Figures 2 and 3. Approximately 60 cable moorings are required for each of these designs. Note that concrete thickness of the walls is decreased for Alternatives #0 and #1, and the cable mooring system is upgraded on Alternative #2.

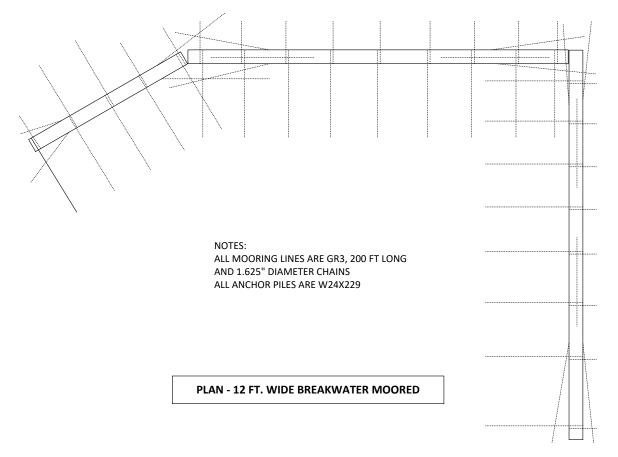


Figure 2 - Typical Cable Mooring System Installation Plan for 12' Wide Floats (60 Cables)

10/30/2019

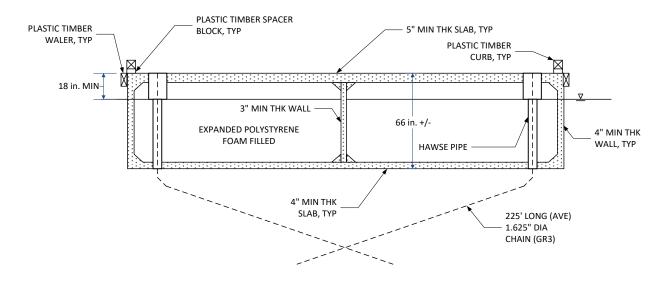


Figure 3 - Typical Cable Moored Float Cross Section for 12', 20', and 25' Wide Floats

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

12' Wide Breakwater Interstitial Pile Moored Alternatives – Mooring Installation Plans/Float Cross-Section

Alternatives #3 and #4 use 12' wide sections, like the existing floats at the Port Orchard Marina Breakwater, except that the pontoons to be built in these new alternative designs are completely enclosed concrete boxes. Alternatives #3 and #4 both utilize Interstitial Guide Pile mooring systems, however because of the 12' width of the floats, interstitial piles can only be used on one side of the breakwater. On the other side of the breakwater, the guide piles must be employed with normal pile hoops. Typical section of breakwater and installation of breakwater plan are shown in Figures 4 and 5. Approximately 34 - 30" diameter 1" thick wall steel guide piles are required for each of these designs. Note that concrete thickness of the walls is decreased for Alternative #4.

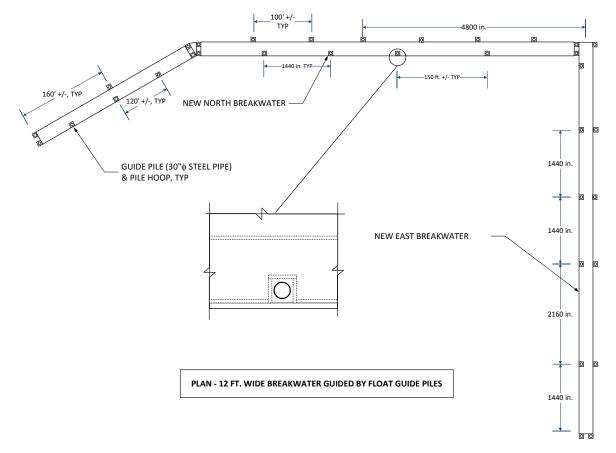
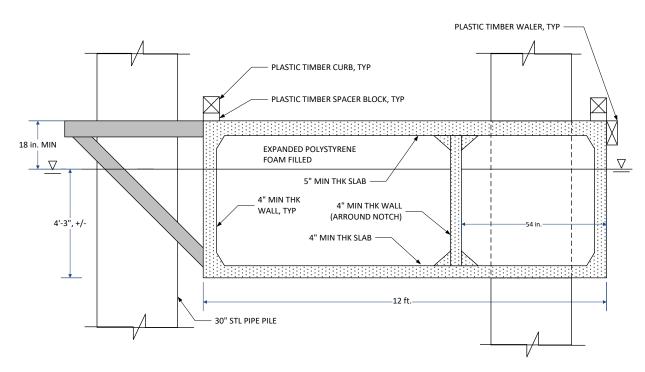



Figure 4 - Typical Interstitial Guide Pile Mooring System Installation Plan for 12' Wide Floats (34 Piles)

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

TYPICAL SECTION - 12' WIDE NEW BREAKWATER

Figure 5 - Typical Interstitial Guide Pile Moored Float Cross-Section for 12' Wide Floats

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

25' & 20' Wide Floats Interstitial Pile Moored Alternatives – Mooring Installation Plans/Float Cross-Section

The installation plans and cross-sections for the interstitial guide pile moored breakwater versions using the 25' wide float (Alternative #5) and 20' wide float (Alternative #7) are similar. This installation plan is shown in Figure 6 and a typical cross-section is shown in Figure 7.

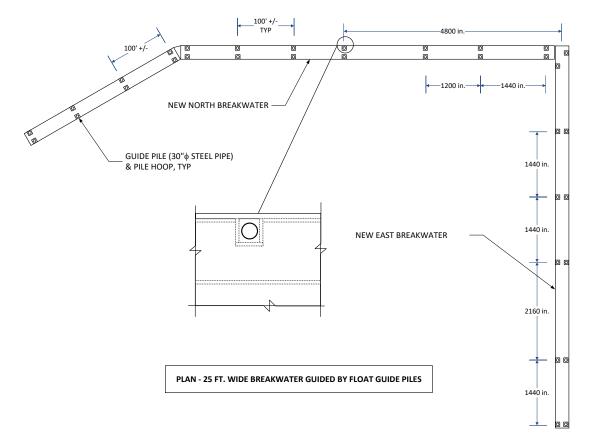


Figure 6 - Typical Interstitial Guide Pile Mooring System Installation Plan for 25 and 20' Wide Floats (34 Piles)

10/30/2019

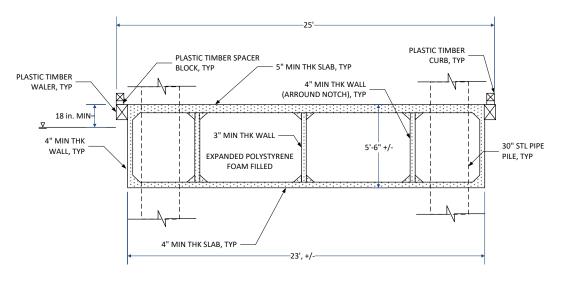


Figure 7 - Typical Interstitial Guide Pile Moored Float Cross-Section for 20 and 25' Wide Floats

10/30/2019

25' &20' Wide Floats Cable Moored Alternatives – Mooring Installation Plans/Float Cross-Section

The installation plans and cross-sections for cable moored breakwater versions using the 25' wide float (Alternative #6) and 20' wide float (Alternative #8) are similar.

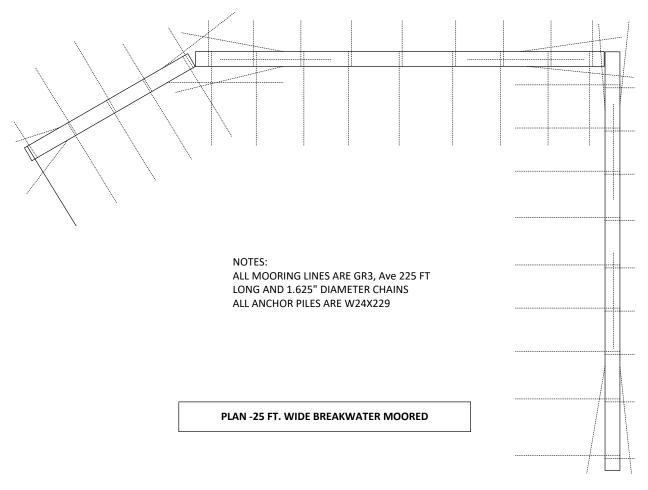


Figure 8 - Typical Cable Moored System Installation Plan for 25 and 20' Wide Floats (62 Cables)

10/30/2019

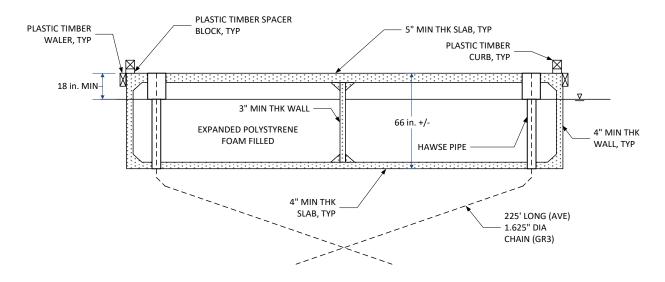


Figure 9 – Typical Cable Moored Float Cross-Section for 25' and 20' Wide Floats

Concept Design for Replacement of Port Orchard Marina North & East Breakwaters

10/30/2019

Opinion of Probable Construction Cost

A Rough Order of Magnitude (ROM) estimate of construction cost for the replacement of north and east breakwaters at Port Orchard Marina was performed and a summary of the cost estimate for the breakwater replacement project for each alternative, including the indirect costs (contingency, contractor's overhead and profit, taxes, permitting and mitigation costs, and design fees) is shown on the table below. A summary of estimated annual cost for maintenance for each alternative also is shown in this table at the very bottom of the spreadsheet.

ROM COST ESTIMATE WORKSHEET ART ANDERSON ASSOCIATES

ITEMS	QUANT	ITY					FIRST CO	OST OF CONSTR					
DESCRIPTION OF WORK	#	UNIT	Unit \$	Alt #0	Alt #1	Alt #2	Alt #3	Alt #4	Alt #5	Alt #6	Alt #7	Alt #8	
Mobilization	1	LS	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	
Remove exst floats	19,700	SF	\$15	\$295,500	\$295,500	\$295,500	\$295,500	\$295,500	\$295,500	\$295,500	\$295,500	\$295,500	
Demo all exst float chains/cables	70	EA	\$400	\$28,000		\$28,000	\$28,000	\$28,000	\$28,000	\$28,000	\$28,000	\$28,000	
Demo 25% exst float chains/Cables (alt 1)	17	EA	\$400		\$6,800								
Demo all exst stake piles	70	EA	\$3,000	\$210,000		\$210,000	\$210,000	\$210,000	\$210,000	\$210,000	\$210,000	\$210,000	
Demo 25% exst stake piles (alt 1)	17	EA	\$3,000		\$51,000								
New 12'W x 5.75'H floats (4" top/3" sides+btm)	19,700	SF	\$200	\$3,940,000	\$3,940,000			\$4,137,000					
New 12'W x 5.75'H floats (5" top/4" sides+btm)	19,700	SF	\$220			\$4,334,000	\$4,550,700						
New 20'W x 5.75'H floats (5" top/4" sides+btm)	33,000	SF	\$260								\$8,580,000	\$8,580,000	
New 25'W x 5.25'H floats (5" top/4" sides+btm)	41,000	SF	\$270						\$11,070,000	\$11,070,000			
New Interstitial GuidePiles (30" diameter, 1" wall)	34	EA	\$17,000				\$481,667	\$481,667	\$578,000		\$578,000		
New stake piles (W24 x 229)	62	EA	\$8,000	\$496,000		\$644,800				\$744,000		\$744,000	
25% New stake piles (W24 x 229) Alt 1	17	EA	\$8,000		\$136,000								
New mooring lines (200'L with 1-5/8' chain)	62	EA	\$1,500	\$93,000		\$120,900				\$139,500		\$139,500	
25% New mooring lines (200'L with 1-5/8' chain) Alt 1	17	EA	\$1,500		\$25,500								
Wet + drystandpipe fire suppression/Potable Water	19,700	SF	\$25	\$492,500	\$492,500	\$492,500	\$492,500	\$492,500	\$640,250	\$640,250	\$640,250	\$640,250	
Electrical power/distribution/Lighting	19,700	SF	\$45	\$886,500	\$886,500	\$886,500	\$886,500	\$886,500	\$1,152,450	\$1,152,450	\$1,152,450	\$1,152,450	
Mooring/Float Accessories (allow)	1	LS	\$15,500	\$15,500	\$15,500	\$15,500	\$15,500	\$15,500	\$15,500	\$15,500	\$15,500	\$15,500	
Permits - Same Footprint	1	LS	\$20,000	\$20,000	\$20,000	\$20,000	\$20,000	\$20,000					
Permits - Larger Floats	1	LS	\$100,000						\$100,000	\$100,000	\$100,000	\$100,000	
Mitigation - Larger Floats	1	LS	\$250,000						\$250,000	\$250,000	\$250,000	\$250,000	
Demobilization	1	LS	\$50,000	\$50,000	\$50,000	\$50,000	\$50,000	\$50,000	\$50,000	\$50,000	\$50,000	\$50,000	
DIRECT LABOR/MATERIAL ITEM SUBTOTAL				\$6,627,000	\$6,019,300	\$7,197,700	\$7,130,367	\$6,716,667	\$14,489,700	\$14,795,200	\$11,999,700	\$12,305,200	
GENERAL CONDITIONS ITEMS	QUANT	ΙТΥ											
Description of Item	#	UNIT	UNIT(\$)										
Project Manager/Field Supervision Cost	10%	LS		\$662,700	\$601,930	\$719,770	\$713,037	\$671,667	\$1,448,970	\$1,479,520	\$1,199,970	\$1,230,520	
SUBTOTAL				\$662,700	\$601,930	\$719,770	\$713,037	\$671,667	\$1,448,970	\$1,479,520	\$1,199,970	\$1,230,520	
CONTRACTOR'S OVERHEAD	15%			\$1,093,455	\$993,185	\$1,187,621	\$1,176,511	\$1,108,250	\$2,390,801	\$2,441,208	\$1,979,951	\$2,030,358	
CONTRACTOR'S PROFIT	10%			\$728,970	\$662,123	\$791,747	\$784,340	\$738,833	\$1,593,867	\$1,627,472	\$1,319,967	\$1,353,572	
BONDS/INSURANCE	3%			\$218,691	\$198,637	\$237,524	\$235,302	\$221,650	\$478,160	\$488,242	\$395,990	\$406,072	
SUBTOTAL				\$2,041,116	\$1,853,944	\$2,216,892	\$2,196,153	\$2,068,733	\$4,462,828	\$4,556,922	\$3,695,908	\$3,790,002	
BID ADDITIVE ITEMS													
N/A			\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
N/A			\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
LABOR & MATERIALS SUBTOTAL				\$9,330,816	\$8,475,174	\$10,134,362	\$10,039,556	\$9,457,067	\$20,401,498	\$20,831,642	\$16,895,578	\$17,325,722	
BREMERTON SALES TAX	9%			\$839,773.44	\$762,765.70	\$912,092.54	\$903,560.06	\$851,136.00	\$1,836,134.78	\$1,874,847.74	\$1,520,601.98	\$1,559,314.94	
DESIGN/ENGINEERING FEE*	15%			\$1,399,622	\$1,271,276	\$1,520,154	\$1,505,933	\$1,418,560	\$3,060,225	\$3,124,746	\$2,534,337	\$2,598,858	
DESIGN CONTINGENCY	10%			\$933,081.60	\$847,517.44	\$1,013,436.16	\$1,003,955.63	\$945,706.67	\$2,040,149.76	\$2,083,164.16	\$1,689,557.76	\$1,732,572.16	
CONSTRUCTION EST CONTINGENCY	15%			\$1,399,622.40	\$1,271,276.16	\$1,520,154.24	\$1,505,933.44	\$1,418,560.00	\$3,060,224.64	\$3,124,746.24	\$2,534,336.64	\$2,598,858.24	
ESCALATION TO 2021	6%			\$559,849	\$508,510	\$608,062	\$602,373	\$567,424	\$1,224,090	\$1,249,898	\$1,013,735	\$1,039,543	
SUBTOTAL				\$5,131,949	\$4,661,346	\$5,573,899	\$5,521,756	\$5,201,387	\$11,220,824	\$11,457,403	\$9,292,568	\$9,529,147	
* Note: permitting costs are not included in this design fee estimate													
* Note: permitting costs are not included in this design fee estimate GRAND TOTAL				\$14,460,000	\$13,140,000	\$15,710,000	\$15,560,000	\$14,660,000	\$31,620,000	\$32,290,000	\$26,190,000	\$26,850,000	
				\$14,460,000	\$13,140,000	\$15,710,000	\$15,560,000	\$14,660,000	\$31,620,000	\$32,290,000	\$26,190,000	\$26,850,000	

Project Schedule

There are two potential schedules for all 12' wide Alternatives driven by the design process and the 20-25' alternatives driven by the permitting process.

D	0	Task Mode	Task Name			Duration	Start	Finish	Predecessors	Qtr 3 Qtr	2020 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4	2021 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1
1		+										
2		•		nent of N & E Breakwa nard Marina - 12' wid		604 days	Mon 12/2/19	Thu 3/24/22				
3			Design	and permit		280 days	Mon 12/2/19	Fri 12/25/20				
4		*	Issue	e and Award RFQ for o	lesign	30 days	Mon 12/2/19	Fri 1/10/20				
5		÷	35%	Design For Permit Ap	plication	40 days	Mon 1/13/20	Fri 3/6/20	4		L	
6		*	NWF	P-3 (USACE) Permit Ef	fort	150 days	Mon 3/9/20	Fri 10/2/20	5			
7		*	HPA	/Shoreline Permit Effo	ort	150 days	Mon 3/9/20	Fri 10/2/20	5		·	
8		*	Miti	gation Effort		150 days	Mon 3/9/20	Fri 10/2/20	5		·	
9		*	Desi	gn Develelopment		90 days	Mon 3/9/20	Fri 7/10/20	5		1	
10		*	Fina	l Design		120 days	Mon 7/13/20	Fri 12/25/20	9		×	1
11		-	Bid & C	Construction		324 days	Mon 12/28/20	Thu 3/24/22			I	
12		*	Bid -	Advertise & Award		64 days	Mon 12/28/20	Thu 3/25/21	10,8		1	-
13		*	Cons	struction		260 days	Fri 3/26/21	Thu 3/24/22	12			*
		. <u>.</u>		Task			tive Summary	0	External Ta			
				Split	•		iual Task		External M	ilestone	<u>م</u>	
			ter Replace	Milestone Summary			ation-only Jual Summary Rollup		Deadline		*	
ate:	Mon	10/21/19		Project Summary			iual Summary Kollup iual Summary		Progress Manual Progress	ouress		
				Inactive Task	u		t-only	C C	 Ivianual Ph 	gress		
				Inactive Milestone	\$		sh-only	3				
					-		Page 1	-				

Figure 10 - 12' Wide Alternative

Concept Design for Replacement of Port Orchard Marina North & East Breakwaters

10/30/2019

>	•	Task	Task Name			Duration	Start	Finish	Predecessors			2020			2021	Qtr 2 Qtr 3	20	22	
1	0	Mode	Penlacem	ent of N & E Breakw	inters at	654 days	Mon 12/2/19	Thu 6/2/22		Qtr 3	Qtr 4	Qtr1 Q	Qtr2 Qt	r3 Qtr4	Qtr 1	Qtr 2 Qtr 3	Qtr4 Q	r 1 Qtra	2 Qtr 3
		-9		ard Marina - 20-25'		054 0845	Wi0112/2/19	1110 07 27 22											
2		-6	Design	and permit		330 days	Mon 12/2/19	Fri 3/5/21		-	ŀ				-				
3		*	Issue	and Award RFQ for	design	30 days	Mon 12/2/19	Fri 1/10/20			1								
4		-5	35%	Design For Permit Ap	oplication	40 days	Mon 1/13/20	Fri 3/6/20	3			-							
5		*	Indiv	idual Permit (USACE)) Effort	260 days	Mon 3/9/20	Fri 3/5/21	4										
6		*	HPA,	/Shoreline Permit Effe	ort	260 days	Mon 3/9/20	Fri 3/5/21	4										
7		*	Mitig	gation Effort		260 days	Mon 3/9/20	Fri 3/5/21	4						h				
8		*	Desi	gn Develelopment		90 days	Mon 3/9/20	Fri 7/10/20	4										
9		*	Final	Design		120 days	Mon 7/13/20	Fri 12/25/20	8				*		-				
10		-	Bid & C	Construction		324 days	Mon 3/8/21	Thu 6/2/22							•				
11		*	Bid -	Advertise & Award		64 days	Mon 3/8/21	Thu 6/3/21	7,9						Ť				
12		-	Cons	truction		260 days	Fri 6/4/21	Thu 6/2/22	11							*			
				Task			ive Task		Manual Sum		ıp 🗖			cternal Mile	stone	\$			
rojec	t PO	Breakwat	ter Replace	Split	•			۵	Manual Sum	nmary	1			eadline		•			
Date: I	Mon 1	10/21/19		Milestone Summary			ive Summary ual Task	0	Start-only Finish-only		С - Э			rogress Ianual Prog					
				Summary Project Summary			tion-only		External Tas				×	anuai Prog	iess				

Figure 11 - 20-25' Wide Alternative

10/30/2019

Trade-Off Analysis of Alternatives

Trade-Off Analysis Criteria

The critical issues to consider in this analysis are those issues that will most greatly influence the decision to be made by the Port Commissioners. These are:

First Cost impacts

- 1. Estimated Construction Cost represented as a cost value from the estimated cost spreadsheet.
- Constructability This is a measure of the likelihood of getting competitive bids. Complexity
 of construction, length of float modules, etc., can significantly influence the number of
 bidders and ultimate first cost.

Lifecycle impacts

- 1. Estimated Annual Maintenance Cost represented as a cost value from the estimated cost spreadsheet
- 2. Impacts on Port Maintenance Staff Time/resource impacts requiring greater than normal attention from Port Maintenance Staff will reduce this grade.
- 3. Estimated Lifecycle all alternative using new materials will be designed to 50-year life cycle. Re-use of components lowers the expected lifecycle of the overall system.

Permitting/Mitigation Impacts

- 1. Permitting Impacts on Schedule Larger floats will cause the need for an Individual Permit and longer approval times. This delays execution which will increase costs due to inflation in labor and material and delays beneficial use.
- 2. Permitting and Mitigation Costs represented as a cost value from the estimated cost spreadsheet

Functionality

Note that all alternatives provide adequate protection to the Marina.

- 1. Flexibility in providing Permanent Berthing Spaces on the inside of the Breakwater Guide piles, whether interstitial or not, impact the ability for flexible spacing of permanent mooring positions.
- 2. Ease of ability to provide a suitable temporary berth for the Cruise Vessel, close to shore access points, if possible.

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

3. Ability of the breakwater to serve as a community amenity (park). Available clear space on the deck of the breakwater to allow public waterfront access for community activities conforming to ADA requirements and other beneficial use as a Park Amenity.

For the initial analysis, First Cost was given a weight of 3, Annual Maintenance Cost was given a weight of 2, Lifecycle was given a weight of 2, and the remaining criteria were weighted at 1. If a change to the weighting of the factors is desired, this can be corrected during the review process.

Another important consideration is availability and capability of local float manufacturers. Below is a table of local vendors and their capabilities. These factors will be important criteria to be considered during the design phase. Concept design assumes that sections will be designed and built to maximize competition during bidding, and that the resulting sections will be rigidly connected for each straight section via post-tensioning cables – similar to what was done for the Bremerton breakwater in 2007.

Manufacturers	Facility and/or Equipment for Launching and Lifting	Max. Effective Lifting Capacities (kip)	Max. Effective Length for 25 ft. Wide Float (ft.)	Max. Effective Length for 12 ft. Wide Float (ft.)		
Concrete Tech	Graving Dock	Unlimited	200	200		
Concrete Tech	Precast Plant	120	25	50		
Bellingham Marine	150-ton Travel Lift	250	50	100		
Bellingham Marine	Precast Plant Crane	120	25	50		
Manson Construction	Submersible Ocean Barge	642	160	160		

Table 2 - Summary Maximum Sizes (Approx.) of Individual Pontoons

Performance results for various widths of breakwater float are shown below. This table demonstrates that the new 12' section for the breakwater is nearly as effective as the 20' section in attenuating waves.

Table 3 - Breakwater Performance	for Wave Height 3.1 ft.
----------------------------------	-------------------------

Breakwaters	Transmission Coefficient, Kt	Transmitted Wave Height (ft.) inside Marina
Existing – 12' wide x 3' deep	0.77	2.4'
New – 12' wide x 5.75' deep	0.66	2.0′
New – 20' wide x 5.75' deep	0.51	1.6′
New – 25' wide x 5.5' deep	0.45	1.4'

10/30/2019

Grading Standards for Quantitative Analysis

The below table describes the criteria used for determining the quantitative scores for each option.

Scoring Values/Ranges for Each Criterion									
	Weighting Factor	Low (L)	Medium Low (ML)	Medium (M)	Medium High (MH)	High (H)			
Quantitative Score		1	2	3	4	5			
First Cost Impacts	-	-	-	-	-	-			
Estimated Construction Cost	3	>\$30,000,001	\$25,000,001- \$30,000,000	\$20,000,001- \$25,000,000	\$15,000,000- \$20,000,000	<\$15,000,000			
Constructability	1	L	ML	м	МН	н			
Lifecycle Impacts	-	-	-	-	-	-			
Estimated Annual Maintenance Cost	2	>\$800,000	\$600,001- \$800,000	\$400,001- \$600,000	\$200,001- \$400,000	<\$200,000			
Impacts on Port Maintenance Staff	1	н	мн	м	ML	L			
Estimated Lifecycle (years)	2	0-25	>25 - 30	>30 - 35	>35 - 40	>45			
Permitting/Mitigation	-	-	-	-	-	-			
Schedule Impacts (Months delay)	1	> 6	5-6	3-4	1-2	0			
Permitting/Mitigation Costs	1	>\$500,000	\$400,001- \$500,000	\$300,001- \$400,000	\$200,001- \$300,000	< \$200,000			
Functionality	-	-	-	-	-	-			
Permanent Berth Flexibility	1	L	ML	м	МН	н			
Suitable Cruise Vessel Berth	1	L	ML	м	мн	н			
Community Amenity Value	1	L	ML	м	мн	н			

Table 4 - Scoring Values/Ranges for Each Criterion

10/30/2019

Evaluation Values for Each Alternative

Inputs for evaluating alternative scores are provided below:

Table 5 - Evaluation Values for Each Criterion

	Weighting Factor	Alt #0	Alt #1	Alt #2	Alt #3	Alt #4	Alt #5	Alt #6	Alt #7	Alt #8
First Cost Impacts	-	-	-	-	-	-	-	-	-	-
Estimated Construction Cost	3	\$14,460,000	\$13,140,000	\$15,710,000	\$15,560,000	\$14,660,000	\$31,620,000	\$32,290,000	\$26,190,000	\$26,850,000
Constructability	1	м	L	мн						
Lifecycle Impacts	-	-	-	-	-	-	-	-	-	-
Estimated Annual Maintenance Cost	2	\$584,000	\$527,000	\$636,000	\$622,000	\$586,000	\$1,265,000	\$1,300,000	\$1,048,000	\$1,083,000
Impacts on Port Maintenance Staff	1	м	мн	м	ML	м	ML	м	ML	м
Estimated Lifecycle	2	35	0	50	50	35	50	50	50	50
Permitting/Mitigation	-	-	-	-	-	-	-	-	-	-
Schedule Impacts	1	0	0	0	2	2	6	6	6	6
Permitting/Mitigation Costs	1	\$20,000	\$20,000	\$20,000	\$20,000	\$20,000	\$350,000	\$350,000	\$350,000	\$350,000
Functionality	-	-	-	-	-	-	-	-	-	-
Permanent Berth Flexibility	1	L	L	мн	м	м	мн	н	мн	н
Suitable Cruise Vessel Berth	1	L	L	мн	ML	ML	мн	н	мн	н
Community Amenity Value	1	ML	ML	м	ML	ML	мн	н	мн	н

Evaluation Values for Each Criterion

10/30/2019

Quantitative Values for Each Alternative

Quantitative Scores for the Alternatives are shown below: Update the scores for the changes above.

10/30/2019

Table 6 - Quantitative Values for Each Criterion

Quantitative Values for Each Criterion

	Mainhting									
	Weighting Factor	Alt #0	Alt #1	Alt #2	Alt #3	Alt #4	Alt #5	Alt #6	Alt #7	Alt #8
First Cost Impacts	-	-	-	-	-	-	-	-	-	-
Estimated Construction Cost	3	5	5	4	4	5	1	1	2	2
Constructability	1	3	1	4	4	4	4	4	4	4
Lifecycle Impacts	-	-	-	-	-	-	-	-	-	-
Estimated Annual Maintenance Cost	2	3	3	2	2	3	1	1	1	1
Impacts on Port Maintenance Staff	1	3	2	3	4	3	4	3	4	3
Estimated Lifecycle	2	2	1	5	5	2	5	5	5	5
Permitting/Mitigation	-	-	-	-	-	-	-	-	-	-
Schedule Impacts	1	5	5	5	4	4	2	2	2	2
Permitting/Mitigation Costs	1	5	5	5	5	5	3	3	3	3
Functionality	-	-	-	-	-	-	-	-	-	-
Permanent Berth Flexibility	1	1	1	4	3	3	4	5	4	5
Suitable Cruise Vessel Berth	1	1	1	4	2	2	4	5	4	5
Community Amenity Value	1	2	2	3	2	2	4	5	4	5
Sum of Values		30	26	39	35	33	32	34	33	35
Sum of weighted values		45	40	54	50	48	40	42	43	45

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

Summary and Recommendations

Short-term repairs including mortar patching and the addition of bladder units are no longer effective to extend service lives of the existing overaged north and east breakwaters. It is recommended that replacement of the breakwater floats with new heavier duty units, which last minimum 50 years.

Because of the relatively shallow water in this marina (compared to that of Bremerton) the use of guide piling system is feasible for installation of the new breakwaters because it is competitive in cost with the stake pile/cable moored system. However, there are positive and negative considerations for both methods of mooring the floats:

- 1. External guide pile hoops complicate temporary berthing space and limit permanent berthing space along the breakwater. This impact is especially significant for the 12' wide floats because guide piles on one side or the other of each 12' wide float will need to be moored with external pile hoops.
- 2. Interstitial guide piles act as interferences to diminish deck space for use for community events and other uses. This impact is also especially significant for the 12' wide floats.
- 3. Even Interstitial piles will complicate permanent berthing layouts, as the extending pile presents an obstruction for gangways, maintenance, etc.
- 4. Guide piles are more accessible than cable mooring systems for maintenance, and thus have a lower annual maintenance cost.
- 5. The first cost of both mooring systems is about the same.
- 6. While the annual maintenance cost for a cable moored system is higher than that for a guide pile system, the requirement for annual inspections of the cable moored system tends to ensure that corrosion is managed more diligently, thus extending the lifecycle of a cable moored system over that of a guide pile mooring system.
- 7. A cable moored system is preferred for a 12'wide float system and graded out highest (alternative #2) with a cumulative weighted sum of 54 in the trade off analysis. A summary of the comparison of alternative is included in Appendix C.

In Appendix D, three alternatives were developed for consideration as a separate project to address the current ADA access deficiencies to the East and North Breakwater. The recommendation is to implement Option #3 as soon as funding can be made available and design completed.

Concept Design for Replacement of Port Orchard Marina North & East Breakwaters 10/30/2019

Appendix A – 2019 Concept Design Review Meeting Minutes

10/30/2019

Appendix B – Revised Concept Design Calculations

10/30/2019

Appendix C – Comparison of Alternatives - Matrix

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS

Appendix D – Breakwater ADA Access Considerations

Background

The existing breakwater is currently accessed from a pier and gangway that provides access to the F floats, the activity/event float, and to the breakwater via connecting walkway floats and guide piles. This existing access exceeds slope requirements for ADA access. With the design and construction of a new breakwater, there is an assumed intent that ADA access will either be desired or required depending on potential funding requirements. Note that the F Floats and walkway floats are over 30 years old and a target for future replacement which could also include an ADA access improvement as part of that scope (versus a stand-alone project). The options considered do not include replacement of the entire system – only selected portions of that float system. The following options are very conceptual approaches to providing that ADA access.

Recommendation

Based on First Cost, the likely recommended option would be Option 3.

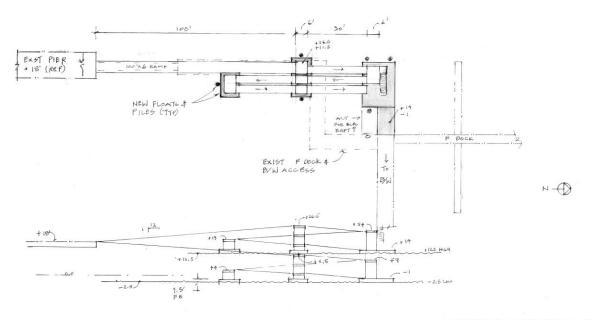
Option #1 - Develop new ADA Access Via Exiting Gate 4 - 100 ft Ramp Straight.

Description

Option #1 utilizes a 100-foot gangway from the fixed pier to a floating platform that then leads one to a series of 30-foot-long ramp sections with intermediate landings, as well as to a landing with stairs. This configuration is generically similar to the Bremerton marina access. ADA allows for the gangway to be compliant during a majority of tidal conditions. The 30-foot ramp sections with landings are strictly compliant with the ADA requirements. This option would eliminate the double 90-degree directions of the existing configuration but would also decrease the number of F float boat slips by two slips. This configuration would need three stair/ramp tower floats with piles and a connecting float section to the F float walkway that leads to the breakwater.

Cost Estimate

Detailed ROM cost estimate in Attachment 1. ROM costs are projected to be approximately \$1.5 – 1.8 Million.



10/30/2019

Concept Design for Replacement of Port Orchard Marina North & East Breakwaters

Option 1 Concept Sketch

(L) = LANDING

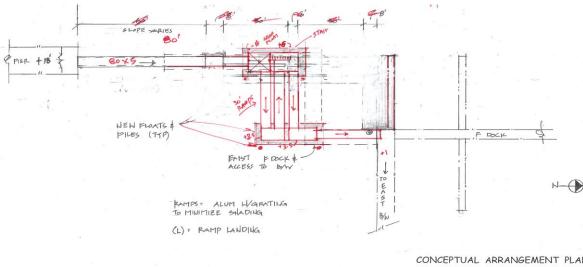
NOTE: ALL RAMPS AND LANDINGS WOULD HAVE ALUMINUM GRATING WITH 0.5" MAXIMUM OPENINGS TO REDUCE SHADING

CONCEPTUAL ARRANGEMENT PLAN ADA ACCESS TO BREAKWATER AND GUEST DOCK

PORT ORCHARD MARINA

10/30/2019

CONCEPT DESIGN FOR REPLACEMENT OF PORT ORCHARD MARINA NORTH & EAST BREAKWATERS


Option #2 - Develop new ADA Access Via Exiting Gate 4 - 80 ft Ramp – 90 Degree

Descriptions

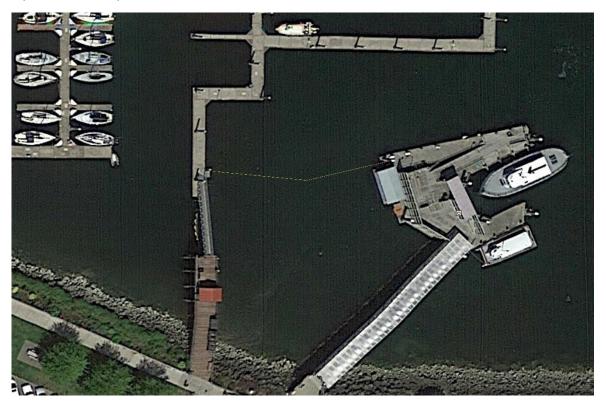
Option 2 is an attempt to decrease the impacts to the F float boat slip configuration and number of stair/ramp tower floats. This option utilizes an 80-foot gangway from the fixed pier to a floating stair and ramp tower that leads one to a series of 30-foot ramps and intermediate landings. The stairs in this configuration still lead to two of the ramp sections versus a full stair. As in Option #1, the gangway has more flexible ADA requirements while the rest of the ramps and landings are in strict compliance. This option removes the existing double 90-degree float configuration and decreases the number of boat slips by one versus two slips. This option would need two, larger stair/ramp floats with guide piles and final ramp connects to the existing walkway to the breakwater.

Cost Estimate

Detailed ROM cost estimate in Attachment 2. ROM costs are projected to be approximately \$1.45 – 1.75 Million.

Option 2 Concept Sketch

CONCEPTUAL ARRANGEMENT PLAN ADA ACCESS TO BREAKWATER (AND F DOCK) PORT ORCHARD MARINA



10/30/2019

Option #3 ADA access Via Kitsap Transit Passenger Ferry Terminal.

Option#3 Concept Sketch

Description

Option 3 is based on a discussion with Port personnel who suggested a possible collaboration with Kitsap Transit (who often uses the breakwater). This option would provide walkway floats between the northwest corner of the Kitsap Transit passenger ferry float (which is ADA accessible) and the F Float walkway. The raised deck of the Kitsap Transit float will need to be extended towards the NW corner area and/or more ADA compliant ramps to that corner area. Two approximately 50' to 54' walkway floats with guide piles and with a midpoint transition platform attached to one of the two floats would accommodate the change in angle. Connecting transition ramps/plates at each end and at the midpoint transition will provide float-to-float access. This option potentially provides the least cost approach, but may result in a potentially mixed ownership/gates and security responsibility conditions that would need to be coordinated and formalized by the Port and KT.

Cost Estimate

Detailed ROM cost estimate in Attachment 3. ROM costs for this approach are projected to be approximately \$700,000 – \$800,000.

10/30/2019

Appendix D, Attachment 1 – Option 1 ROM Cost Estimate

ITEMS	QUANT	ITY	ITEN	1 COST		TOTALS
DESCRIPTION OF WORK	#	UNIT	UNIT(\$)	SUM TOT (\$)		SUM TOTS (\$)
Mobilization	1	LS	\$70,000.00	\$70,000.00		\$70,000
Remove exst floats	1,140	SF	\$15.00	\$17,100.00		\$17,100
New stair/ramp floats 5-8'deep+/-)	680	SF	\$500.00	\$340,000.00		\$340,000
New connecting walkway float (3' deep +/-)	120	SF	\$230.00	\$27,600.00		\$27,600
New guide piles	8	EA	\$25,000.00	\$200,000.00		\$200,000
100' Gangway	600	SF	\$150.00	\$90,000.00		\$90,000
ADA ramps and landings	5	EA	\$6,000.00	\$30,000.00		\$30,000
Ramp/stair tower structures	1	LS	\$80,000.00	\$80,000.00		\$80,000
Stairs and railings	1	LS	\$25,000.00	\$25,000.00		\$25,000
Modify F float connection	1	LS	\$5,000.00	\$5,000.00		\$5,000
Wet + drystandpipe fire suppression	1,000	SF	\$25.00	\$25,000.00		\$25,000
Electrical power/distribution	1000	SF	\$45.00	\$45,000.00		\$45,000
				\$0.00		\$0
				\$0.00		\$0
Demobilization	1	LS	\$20,000.00	\$20,000.00		\$20,000
				\$0.00		\$0
				\$0.00		\$0
				\$0.00		\$0
				\$0.00		\$0
				\$0.00		\$0
DIRECT LABOR/MATERIAL ITEM SUBTOTAL						\$974,700
GENERAL CONDITIONS ITEMS	QUANT	ITY		COS	ST	
Description of Item	#	UNIT	UNIT(\$)	SUM TOT (\$)		SUM TOTS (\$)
Project Manager/Field Supervision Cost	10%	LS		\$97,470.00		\$97,470
				\$0.00		\$0
				\$0.00		\$0
SUBTOTAL				\$97,470.00	\$0	\$97,470
CONTRACTOR'S OVERHEAD	15%				\$0	\$0 \$160,826
CONTRACTOR'S OVERHEAD	10%					\$100,020
BONDS/INSURANCE	3%					\$32,165
SUBTOTAL						\$268,043
BID ADDITIVE ITEMS			40.00	40.00	40.00	40
N/A			\$0.00	\$0.00	\$0.00	\$0
N/A	-		\$0.00	\$0.00	\$0.00	\$0
LABOR & MATERIALS SUBTOTAL						\$1,242,743
DESIGN/ENGINEERING FEE	10%					\$124,274
DESIGN + CONSTRUCTION EST CONTINGENCY	10%					\$186,411
	15%					\$1.553.428
SUBTOTAL						\$1,553,428 \$0
GRAND TOTAL						\$0 \$1,553,428
UNAID I UTAL						\$1,000,420

10/30/2019

Appendix D, Attachment 2 – Option 2 ROM Cost Estimate

ROM ES	STIMATE	WOR	KSHEET			
ART AN	DERSON	ASSC	OCIATES			
ESTIMATED BY: AAA				PROJECT: Po	M BW Repla	cement
PROJECT & CITY: PoM Breakwater Replacement, PO, V	VA			CONTRACT N		
DATE: Oct 2019					ROM Concept	
EST. VALID TO: N/A ROM use only				SHEET 1	OF	- 1
SCOPE OF WORK:						
option #2						
ITEMS	QUANT	ITY	ITEN	1 COST		TOTALS
DESCRIPTION OF WORK	#	UNIT	UNIT(\$)	SUM TOT (\$)		SUM TOTS (\$)
Mobilization	1	LS	\$70,000.00	\$70,000.00		\$70,00
Remove exst floats	1.040	SF	\$15.00	\$15,600.00		\$15,60
New stair/ramp floats (5-8'deep+/-)	750	SF	\$500.00	\$375,000.00		\$375,00
New guide piles	8	EA	\$25,000.00	\$200,000.00		\$200,00
80' Gangway	480	SF	\$150.00	\$72,000.00		\$72,00
ADA ramps and landings	5	EA	\$6,000.00	\$30,000.00		\$30,00
Ramp/stair tower structures	1	LS	\$90.000.00	\$90,000,00		\$90.00
Stairs and railings	1	LS	\$15,000.00	\$15,000.00		\$15,00
Modify F float connection	1	LS	\$5,000.00	\$5,000.00		\$5,00
Wet + drystandpipe fire suppression	1.000	SF	\$25.00	\$25,000,00		\$25.00
Electrical power/distribution	1000	SF	\$45.00	\$45,000.00		\$45,00
				\$0.00		\$
				\$0.00		\$
Demobilization	1	LS	\$20,000.00	\$20,000.00		\$20,00
				\$0.00		\$
				\$0.00		\$
				\$0.00		\$
				\$0.00		\$
				\$0.00		\$
DIRECT LABOR/MATERIAL ITEM SUBTOTAL				\$0.00		\$962,60
						+/
GENERAL CONDITIONS ITEMS	QUANT	ITY		COS	ST	
Description of Item	#	UNIT	UNIT(\$)	SUM TOT (\$)		SUM TOTS (\$)
Project Manager/Field Supervision Cost	10%	LS		\$96,260.00		\$96,26
				\$0.00		\$
				\$0.00		\$
SUBTOTAL				\$96,260.00	\$0	\$96,26
	15-1				\$0	\$1
CONTRACTOR'S OVERHEAD CONTRACTOR'S PROFIT	15% 10%					\$158,82 \$105,88
BONDS/INSURANCE	3%					\$105,88
SUBTOTAL						\$264,71
BID ADDITIVE ITEMS						
N/A			\$0.00	\$0.00	\$0.00	\$
N/A			\$0.00	\$0.00	\$0.00	\$1
LABOR & MATERIALS SUBTOTAL				_		\$1,227,31
DESIGN/ENGINEERING FEE	10%					\$1,227,31 \$122,73
DESIGN/ENGINEERING FEE DESIGN + CONSTRUCTION EST CONTINGENCY	10%					\$122,73
	15%					
SUBTOTAL						<u>\$1,534,14</u> \$1
GRAND TOTAL						\$1,534,14
GRAND TOTAL						\$1,004,14

10/30/2019

Appendix D, Attachment 3 – Option 3 ROM Cost Estimate

ART AND	ERSON	ASS	DCIATES			
ESTIMATED BY: AAA				PROJECT: Po	M BW Repla	cement
PROJECT & CITY: PoM Breakwater Replacement. PO. WA				CONTRACT N		
DATE: Oct 2019					ROM Concept	Cost Est
EST. VALID TO: N/A ROM use only				SHEET 1	OF	F 1
SCOPE OF WORK:						
option #3 floats btwn KT and F dock						
			-			
ITEMS	QUANT	ITY	ITEN	I COST		TOTALS
DESCRIPTION OF WORK	#	UNIT	UNIT(\$)	SUM TOT (\$)		SUM TOTS (\$)
Mobilization	1	LS	\$50,000.00	\$50,000.00		\$50,00
New stair/ramp floats (8'deep+/-)	0	SF	\$500.00	\$0.00		\$
New walkway floats (8'w x 3' deep)	840	SF	\$230.00	\$193,200.00		\$193,20
New guide piles	4	EA	\$25,000.00	\$100,000.00		\$100,00
Custom transition angle	1	EA	\$5,000.00	\$5,000.00		\$5,00
Float-to-float transition plates/hinges	3	EA	\$4,000.00	\$12,000.00		\$12,00
Modify KT float decking	600	SF	\$100.00	\$60,000.00		\$60,00
Modify F float connection	1	LS	\$5,000.00	\$5,000.00		\$5,00
Wet + drystandpipe fire suppression	0	SF	\$25.00	\$0.00		\$
Electrical power/distribution for lighting/fixtures	1	LS	\$10,000.00	\$10,000.00		\$10,00
				\$0.00		\$
				\$0.00		\$
Demobilization	1	LS	\$20,000.00	\$20,000.00		\$20,00
				\$0.00		\$
				\$0.00		\$
				\$0.00		\$
				\$0.00		\$
				\$0.00		\$1
DIRECT LABOR/MATERIAL ITEM SUBTOTAL						\$455,20
GENERAL CONDITIONS ITEMS	QUANT	175.7		COS		
					51	
Description of Item Project Manager/Field Supervision Cost	#		UNIT(\$)	SUM TOT (\$)		SUM TOTS (\$)
Fioject Manager/Field Supervision Cost	10%	LS		\$45,520.00		\$45,52
	-			\$0.00		\$
SURTOTAL				\$0.00 \$45.520.00	\$0	\$ \$45,52
JOBIOTAL				\$40,020.00	\$0 \$0	<u>\$45,52</u> \$1
CONTRACTOR'S OVERHEAD	15%				**	\$75,10
CONTRACTOR'S PROFIT	10%					\$50,07
BONDS/INSURANCE SUBTOTAL	3%					\$15,02; \$125,18
BID ADDITIVE ITEMS				· · · · · ·		
N/A			\$0.00	\$0.00	\$0.00	\$
N/A			\$0.00	\$0.00	\$0.00	\$
LABOR & MATERIALS SUBTOTAL						\$580,38
DESIGN/ENGINEERING FEE	10%	1				\$500,30
DESIGN/ENGINEERING FEE DESIGN + CONSTRUCTION EST CONTINGENCY	10%					\$58,U3 \$87.05
	15%					
SUBTOTAL	-					\$725,47! \$1

Port Orchard Marina Breakwater Concept Design Report Review Meeting

October 22, 2019

Art Anderson's Conference Room

Attendees:

- Patrick Vasicek, P.E. Brad Ginn, P.E. Andrew Thorsen, EIT Sean Hoynes, P.E. Vern Schager Schelie Hoynes Willy Ahn, PhD, P.E. James Weaver Fred Salisbury
- Project Manager Sr. Civil Engineer Civil Engineer Chief Engineer Architect Sr. Project Coordinator Project Manager Director of Marine Facilities
- Art Anderson Art Anderson Art Anderson Art Anderson Art Anderson Art Anderson Reid Middleton Port of Bremerton Port of Bremerton

10:05 – Introductions

10:11 – Background

Reviewed plan view diagram showing history of Port Orchard Marina since early 1970's.

Presented the PowerPoint presentation given to the Port Commissioners in 2007 – provided history of the Port orchard Marina and background information discussed in the previous Concept Design report.

Discussed the context of the Port Orchard Marina with the Bremerton Marina, which was completely rebuilt in 2007-8. Discussed prior completed projects that impact the Marina and downtown area.

Discussed the Parking Study conducted by AAA in 2005 for the core of Port Orchard, which was more of a revitalization study. This initiative is finally showing movement forward, the scope of which integrates with the improvements needed at the Port Orchard Marina.

Discussed the impact and importance of the American Cruise Lines vessels coming into the Bremerton Marina and the desire to make both Bremerton and Port Orchard as permanent destinations on their printed schedule.

Discussed the recent forensic study and damage assessment conducted to assess the damage by an allision on the outside of the Bremerton Breakwater It emphasized the challenges posed by extensive marine growth when dive inspection video was analyzed. Corrosion protection is a key challenge for marine facilities in Sinclair Inlet.

Reviewed ROM Cost Estimate for Float Replacement handout from the previous Concept design report. It was noted that these costs have been updated to the new scope considerations in the draft copy of the revised report, but that the numbers must be escalated to 2021.

10:45 – Review Draft Report

Feedback from commissioners and POB staff was to concept design and analyze the costs/impacts of a breakwater that is similar to the Bremerton Breakwater. There is an intention to allow temporary mooring of a Cruise ship in Port Orchard as currently being accomplished at the Bremerton Breakwater.

The AAA/Reid Middleton team carried out a study to include both 20' and a 25" wide float systems and determined guide pile and cable concept designs for all float options according to current codes. There are now nine alternatives identified and analyzed in the revised report, which was sent to all participants in preparation for this meeting.

Design review Comments include:

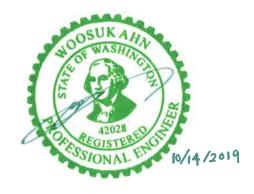
- 1. Per above comment under background escalate all costs to 2021.
- 2. Include a separate line for Sales Tax in the estimates.
- 3. The Commissioners are more concerned regarding first cost that we originally thought when preparing the draft. The Port goal is to not use a bond, so the source of funding is going to be from savings and grants. The high costs of the wider float options are probably going to be non-starters for them. We need to refine the trade-off analysis criteria and process based on this knowledge. We need a way to discern which of the 12' wide options is the best alternative.
- 4. There is much interest in using the new Breakwater as a Park and community amenity, so space on the floats is a bigger issue that we had originally expected.
- 5. In the context of no. 4 above, guide piles, especially interstitial guide piles for the 12' wide float options is a bigger challenge than we expected in the original report. We need to revisit the feasibility of using guide piles for this breakwater.
- 6. Previous desired alternative was Alternative #3, which included guide pile mooring.
- 7. Use 400' length for cruises ship moorage.
- 8. Discussed alternatives to deal with the ADA deficiencies for access to the East and North breakwaters. Reviewed two ADA Access arrangement plans AAA prepared in 2017 for the 10-year maintenance and repair program. The Port suggested a third alternative involving a new float system from the Kitsap Transit passenger ferry terminal to F float. It was decided to add sketches of these three alternatives, ROM cost estimates and a short one-page narrative to an appendix in the final report. This will likely be a separate project, possibly funded prior to construction of the new East and North Breakwater project. Since the Port will be replacing the guest float (F dock) in the near future, it is important to consider the appropriate methodology for solving the ADA access issues
- 9. Need to include a paragraph acknowledging how we addressed seal level rise in report.

11:30 – Lunch

12:00 – Continue to Discuss options

- 1. AAA will send sketches of alternatives to James for him to include in his PowerPoint presentation to the commissioners.
- 2. The Port felt that the report was good work.
- 3. The Port thought it would be helpful to have a spreadsheet with all the information on a single page, including costs, trade-off analysis scoring, benefits and challenges that drive the decision regarding the most suitable alternative.
- 4. Option 3 or 4 are probably what will stick with the commissioners, with the addition of alternative 2, now that cable mooring appears to be an attractive option at this point in time.
- 5. The City, the cruise ship, and customers are pushing for the marina upgrades.
- 6. AAA will revisit and adjust the weighting factors in the decision matrix, make all the changes as indicated above and revise the report for final review and comment in the next two weeks.
- 7. The Port would like to have another similar meeting after review of the final. Intent is to brief the Commissioners at their December 10 meeting (10:00AM 12:00 Noon).
- 8. James will present with Willy Ahn and Patrick Vasicek attending in a supporting role.

12:49 - Adjourn


Port Orchard Breakwater Preliminary Concept Design

Owner: Port of Bremerton

October 14, 2019

Prepared for: Art Anderson Associates

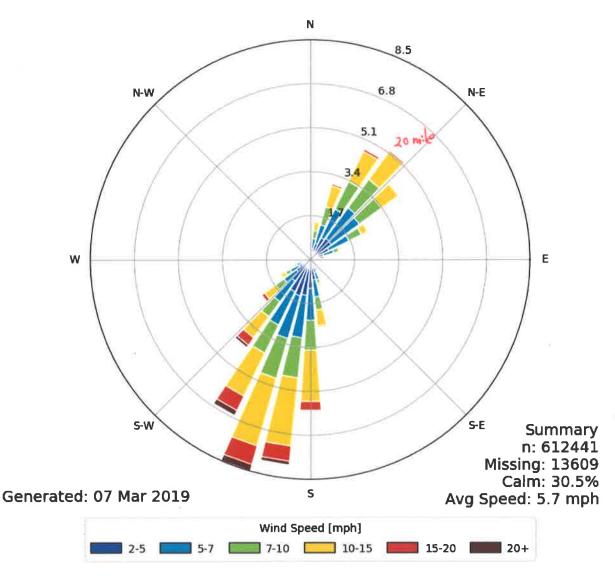
CALCULATIONS

Prepared By:

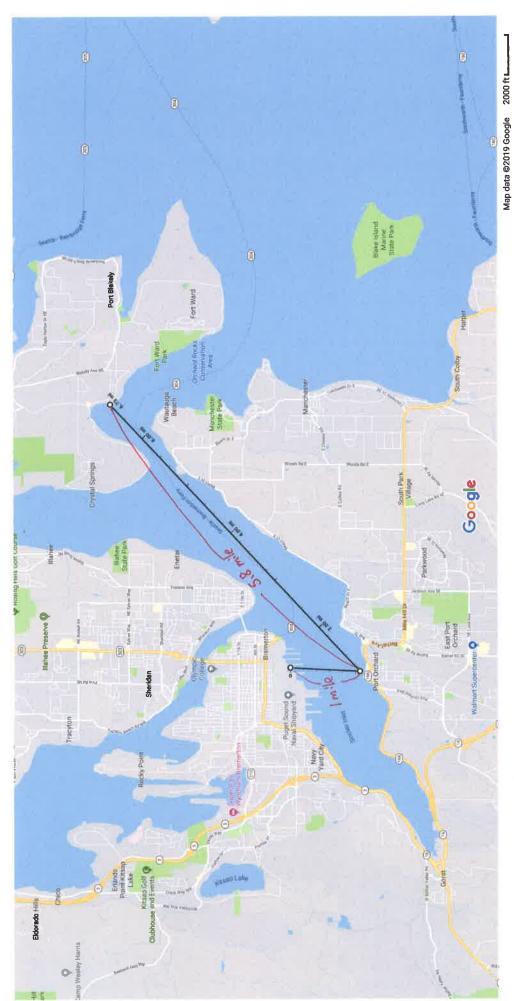
Willy Ahn, Ph.D., P.E.

ReidMiddleton

728 134 Street SW, Suite 200 Everett, WA 98204 425-741-3800 www.reidmiddleton.com


File No. 242019.018

Calculations Environmental Loads


(e)

[PWT] BREMERTON NTNL AWOS Windrose Plot [All Year] Period of Record: 31 Dec 1972 - 07 Mar 2019

Measure distance Total distance: 6.73 mi (10.82 km)

728 134th Street SW Suite 200 Everett, WA 98204 Ph: 425-741-3800 Fax: 425-741-3900

AAA Port Orchard BW Project #: 242019.018

Sheet 1 of 2 Design by WWA 9/24/2019 Checked by 1 of 2 Date

Wave Prediction based on the SPM, Chapter 3, V Estimation of Surface Winds for Wave Prediction Max fastest wind speed = 45 mph from NE (from 2008 Bremerton Marina Breakwater Design) maximum fastest windspeed at EL= 33 ft. (50 year return period) $U_f := 45mph$ find 1hr (3600 sec) average wind speed, $t := \frac{1 \text{ mile}}{U_f}$ time to travel one mile t = 80 s $U_{80} := U_f$ SPM Fig.3-13 $\frac{U_t}{U_{3600}} := 1.277 + 0.296 \cdot \tanh\left(0.9 \log\left(\frac{45s}{t}\right)\right) \qquad \text{for } 1 < t < 3,600 \text{ s}$ $\frac{U_t}{U_{3600}} := -0.15 \cdot \log(t) + 1.534 \quad \text{for } 3,600 \text{ s} < t < 36,000 \text{ s}$ $U_{3600} := \frac{U_{f}}{1.277 + 0.296 \cdot \tanh\left(0.9 \log\left(\frac{45s}{4}\right)\right)}$ one hour average wind speed $U_{3600} = 37.143 \cdot mph$ for 1 hour duration find 30 min (1800 sec) average wind speed, $1.277 + 0.296 \cdot \tanh\left(0.9 \log\left(\frac{45s}{1800s}\right)\right) = 1.012$ $U_{1800} := \left(1.277 + 0.296 \cdot \tanh\left(0.9 \log\left(\frac{45s}{1800s}\right)\right)\right) \cdot U_{3600} = 37.602 \cdot \text{mph}$

728 134th Street SW Suite 200 Everett, WA 98204 Ph: 425-741-3800 Fax: 425-741-3900

CHOIN.

AAA Port Orchard BW Project #: 242019.018 Sheet 2 of 2 Design by WWA 9/24/2019 Checked by 2 of 2 Date

find 2 hr (7200 sec) average wind speed,

 $-0.15 \cdot \log(7200) + 1.534 = 0.955$

 $U_{7200} := (-0.15 \cdot \log(7200) + 1.534) \cdot U_{3600} = 35.486 \cdot mph$

Project: Group: Wave

	1	Case: Port	Crchard BW	
	Winds	peed Adjustr	nent and Wave Growth	
Breaking criteria	0.780			
Item	Value	Units	Wind Obs Type	Wind Fetch (
El of Observed Wind (Zobs)	33.00	feet	Shore (windward)	Deep openwa
Observed Wind Speed (Uobs)	35.50	mph		
Air Sea Temp. Diff. (dT)	-10.00	deg F		
Dur of Observed Wind (DurO)	2.00	hours		
Dur of Final Wind (DurF)	2.00	hours		
Lat. of Observation (LAT)	47.25	deg		
Results				
Wind Fetch Length (F)	5.80	MILES		
Eq Neutral Wind Speed (Ue)	32.87	mph		
Adjusted Wind Speed (Ua)	43.29	mph		
Wave Height (Hmo)	3.13	feet		
Wave Period (Tp)	3.52	sec		

Project: Group: Wave

 (\mathcal{F})

Û.

		Case: Port	t Orchard BW	
	Winds	peed Adjustr	nent and Wave Growth	
Breaking criteria	0.780			
ltem	Value	Units	Wind Obs Type	Wind Fetch Option
El of Observed Wind (Zobs)	33.00	feet	Shore (windward)	Deep openwater
Observed Wind Speed (Uobs)	37.60	mph		
Air Sea Temp. Diff. (dT)	-10.00	deg F		
Dur of Observed Wind (DurO)	0.50	hours		
Dur of Final Wind (DurF)	0.50	hours		
Lat. of Observation (LAT)	47.25	deg		
Results		x	-	
Wind Fetch Length (F)	5.80	MILES		
Eq Neutral Wind Speed (Ue)	34.73	mph		
Adjusted Wind Speed (Ua)	46.47	mph		
Wave Height (Hmo)	1.52	2 feet		
Wave Period (Tp)	2.38	sec		

Project: Group: Wave

	(Case: Por	t Orchard BW	
	Winds	peed Adjusti	ment and Wave Growth	
Breaking criteria	0.780			
Item	Value	Units	Wind Obs Type	Wind Fetch C
El of Observed Wind (Zobs)	33.00	feet	Shore (windward)	Deep openwa
Observed Wind Speed (Uobs)	37.00	mph		- 4511
Air Sea Temp. Diff. (dT)	-10.00	deg F		
Dur of Observed Wind (DurO)	1.00	hours		
Dur of Final Wind (DurF)	1.00	hours		
Lat. of Observation (LAT)	47.25	deg		
Results				
Wind Fetch Length (F)	5.80	MILES		
Eq Neutral Wind Speed (Ue)	34.20	mph		
Adjusted Wind Speed (Ua)	45.56	mph		
Wave Height (Hmo)	2.43	feet		
Wave Period (Tp)	3.12	sec		

Port Orchard BW Project #: 242019.018

Environmental loadings

Current

current speed = 0.1 knots

unit area subjected to environmental loading

current force calculation (MIL-HDBK 102/4A)

 $\rho_{\rm W} := 1.9905 \cdot \frac{\rm slug}{n^3}$ current velocity, $V_{\rm c} := 0.1$ knot mass density of seawater

 $\theta_c := 90$ current angle

float draft $d_f := 3 \text{ft}$

float length $l_f := 120 \, \mathrm{ft}$

 $F_{yc} := 0.5 \cdot \rho_{w} \cdot V_{c}^{2} \cdot \sin(\deg \cdot \theta_{c}) \cdot d_{f} \cdot l_{f}$ current force/ft

 $F_{vc} = 0.01 \cdot kip$

Wind

vessel windage area,

 $A_{vv} := 100 \text{ft} 20 \cdot \text{ft}$

 $\rho_a := 0.00237 \cdot \frac{\text{slug}}{\pi^3}$ wind speed (fastest mile),

mass dendity of air,

typical wind drag coefficient $C_{v} := 1.0$

Find 30 second average wind speed

time to travel 1 mile,
$$t_{1m} := \frac{1 \cdot \text{mile}}{U_{\text{f}}} = 37.89 \,\text{s}$$

from Figure 3-13 Shore Protection Manual

vessel length 100 ft and 20 ft profile height

$$\frac{U_{38}}{U_{3600}} := 1.28 \qquad U_{3600} := \frac{U_{f}}{1.28} = 74.22 \cdot \text{mph}$$

728 134th Street SW Suite 200 Everett, WA 98204

Last Saved: 9/24/2019 6:52 PM E:\Bluefin\CAL\RMI cal\

Uf := 95mph Wind only

Port Orchard BW Project #: 242019.018

from Figure 3-13,

$$\frac{U_{30}}{U_{3600}} \coloneqq 1.32 \qquad U_{3600}$$

$$U_{30} := U_{3600} \cdot 1.32 = 97.97 \cdot \text{mph}$$

shape function related with angle between wind direction and vessel

wind force

 $\mathbf{F}_{\mathbf{y}} \coloneqq 0.5 \cdot \rho_{\mathbf{a}} \cdot \mathbf{U}_{30}^{2} \cdot \frac{\mathbf{A}_{\mathbf{y}\mathbf{v}}}{100 \text{ ft}} \cdot \mathbf{C}_{\mathbf{y}} \cdot \mathbf{f}_{\mathbf{y}}$

 $F_y = 0.49 \cdot klf$

based on UFC 4-159-03

f_y := 1

Port Orchard BW Project #: 242019.018

Environmental loadings

Current

()

current speed = 0.1 knots

unit area subjected to environmental loading

current force calculation (MIL-HDBK 102/4A)

mass density of seawater $\rho_w := 1.9905 \cdot \frac{slug}{r^3}$ current velocity, $V_c := 0.1$ knot

current angle $\theta_c := 90$

float draft $d_f := 3 ft$

float length $l_f := 120 ft$

wind speed (fastest mile),

from Figure 3-13 Shore Protection Manual

current force/ft $F_{vc} := 0.5 \cdot \rho_w \cdot V_c^2 \cdot sin(deg \cdot \theta_c) \cdot d_f \cdot l_f$

 $F_{yc} = 0.01 \cdot kip$

Wind

vessel windage area,

 $A_{VV} := 100 \text{ft} 20 \cdot \text{ft}$ vessel length 100 ft and 20 ft profile height

 $\rho_a := 0.00237 \cdot \frac{\text{slug}}{\text{m}^3}$ mass dendity of air,

typical wind drag coefficient $C_{v} := 1.0$

Find 30 second average wind speed

time to travel 1 mile,
$$t_{1m} := \frac{1 \cdot \text{mile}}{U_{\text{F}}} = 80 \,\text{s}$$

$$\frac{U_{38}}{U_{3600}} := 1.28 \qquad U_{3600} := \frac{U_f}{1.28} = 35.16 \cdot \text{mph}$$

728 134th Street SW Suite 200 Everett, WA 98204

Last Saved: 9/24/2019 6:54 PM E:\Bluefin\CAL\RMI cal\

 $U_f := 45mph$ -----

Case 2

Case 2 w. 4h wave loading

Port Orchard BW Project #: 242019.018

from Figure 3-13,

$$\frac{U_{30}}{U_{3600}} := 1.32$$

$$U_{30} := U_{3600} \cdot 1.32 = 46.41 \cdot \text{mph}$$

shape function related with angle between wind direction and vessel

 $\mathbf{F}_{\mathbf{y}} \coloneqq 0.5 \cdot \rho_{\mathbf{a}} \cdot \mathbf{U}_{30}^{2} \cdot \frac{\mathbf{A}_{\mathbf{y}\mathbf{v}}}{100 \text{ ft}} \cdot \mathbf{C}_{\mathbf{y}} \cdot \mathbf{f}_{\mathbf{y}}$

 $F_y = 0.11 \cdot klf$

wind force

based on UFC 4-159-03

f_y := 1

728 134th Street SW Suite 200 Everett, WA 98204

- f					Γο						Use solver	000-000	d'and
	Max Water Depth	Design Water Depth (d)	Design Wave - H10, Wave Height (ft)	Design Wave Period Seconds	(gt*t) / (2*pi)	Max water depth 2*pi*d	Min Water Depth 2*pi*d	Calculated Wave Length - Max. Water Depth	Calculated Wave Calculated Wave find wave Length - Max. Length - Min. length for Water Depth Water Depth water dept	Use solver to find wave length for max water depth	to find wave length for min water depth	to float)	a of
	35	30	3.84	3.5	62.720	219.9	157.08	81.50	62.00	1.121759628	-0.0655353		
	Calculate Wave Force per Miche Rundgren							A	œ	A-Solve for this by changing K7	B-Solve for this by changing L7	s 7	
Reflection Coefficient x=		-m			From Fig 7-93 SPM								
					Deep water								
1	cosh(2*pi*d/l)	Pressure P1	hi/a*t*t	Hild	IH/ot	QH	vc	Y1					
П	17.88	14.1	0.0100	0.11	0.160	0.63	36.97	28.25	11				
Reflection Coefficient		L			From Fig 7-93 SPM				-				
T									10 12				
	cosh(2*pi*d/l)	Pressure P1	hi/a*t*t	P/iH	ho/HI	оч	yc	yt			,		
	6.34	39.7	0.0100	0.16	0.170	0.67	26.97	23.03				RESULTS	
nbə	al lateral force	triangles and	Calculate Wave Forces using equal lateral force triangles and based on Shore Protection Manual Vol 2 Fig. 7-89 for deep water condition	re Protection	Manual Vol	2 Fig. 7-89	for deep wate	er condition					i.
		Hydrostatic Pressure at	Hydrostatic pressure plus wave pressure	SWL to wave	Bottom of float to crest	Pressure on Float above	Total pressure at bottom of	Hydrostatic pressure at	Total pressure	Total force along side of float - wave and	Total force static pressure	Reduction factor for Wave short crested Forre waves 50%	n factor n for short crested sted waves
	Float Freeboard feet	psf	at mudline psf	crest neight feet	feet	psf	psf	psf	plf	plf			П
	1.5	2233	2247	1.97	6.97	120	424	160	8	1403	399	1004 502	753
edn	al lateral force	triangles and	Calculate Wave Forces using equal lateral force triangles and based on Shore Protection Manual Vol 2 Fig. 7-89 for shallow water condition	re Protection	Manual Vol	I 2 Fig. 7-89	for shallow v	vater condition					
		Hvdrostatic	Hydrostatic Dressure plus		Bottom of	Pressure on	Total pressure at	Hydrostatic		Total force along side of	Total force static	Reduction factor for	Reductio n factor for short crested
	Elnat Frachnard	Pressure at	wave pressure	SWL to wave			bottom of float	pressure at bottom of float	Total pressure at top of float	float - wave and hvdrostatic	pressure	Wave short crested Force waves 50%	sted waves % 75%
Π	feet	psf	psf	feet	feet	psf	psf	psf	plf	plf			ŧ
	1.5	1595	1635	1.97	6.97	119	422	160	00	1399	399	1000 500	150

REID MIDDLETON Client:

Wave force

linear wave theory used wave period $T_w := 3.5sec$

significant wave height, $H_s := 3.1 \cdot ft$

root mean square wave height

$$H_{rms} := \frac{H_s}{1.416}$$
 $H_{10} := 1.8 \cdot H_{rms} = 3.941 \, ft$

water depth, h := 30ft

wave length deep water, $L_o := \frac{g \cdot T_w^2}{2\pi} = 62.728 \text{ ft}$ $L_d := L_o$

wave length transitional water,
$$L_t := \frac{g \cdot T_W^2}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot h}{L_o}\right) = 62.421 \text{ ft}$$

 $\frac{1}{25} = 0.04$ < $\frac{h}{L_t} = 0.481$ < $\frac{1}{2} = 0.5$ transitional water

wave number, $k := \frac{2 \cdot \pi}{L_t} = 0.101 \frac{1}{ft}$

mass density of seawater,
$$\rho_w := 1.9905 \cdot \frac{\text{slug}}{\text{ft}^3} * \text{draft}, \quad l_z := 4 \cdot \text{ft}$$

unit weight, $\gamma_w := 63.8 \cdot \frac{lbf}{ft^3}$ average depth below SWL, z := -1.25 ft

dynamic pressure,
$$p_d := \gamma_w \cdot H_{10} \cdot \frac{\cosh[k \cdot (h+z)]}{\cosh(k \cdot h)}$$
 $p_d = 221.841 \cdot psf$

728 134th Street SW Suite 200 Everett, WA 98204 50% reduction in wave forces based on Jurgen Battjes "Effects of Short-Crestedness on Wave Loads on Long Structures, Applied Ocean Science Research, 1982, Vol. 4. No. 3, and Permanenant International Association of Navigation Congress (PIANC) Report of Working Group No. 13 Report Entitled "Floating Breakwaters, A Practical Guide fo Design and Construction," 1994.

$$p_{d} \cdot l_{z} = 0.887 \cdot \frac{kip}{ft}$$

$$0.5p_{d} \cdot l_{z} = 0.444 \cdot \frac{kip}{ft}$$

 $0.75p_{\rm d} \cdot l_{\rm z} = 0.666 \cdot \frac{\rm kip}{\rm ft}$

Calculations Breakwater Dimensions and Freeboard

ReidMiddleton	Client	Art Anderson Associates	Sheet 1 of 1
	Project	Port Orchard Breakwater	Design by
728 134th Street SW Suite 200	, i ofoot		Date 10/14/2019
Everett, Washington 98204	<u>.</u>		Checked by
Ph: 425 741-3800	Project N	242019.018.000	Date
Fax: 425 741-3900	FIDIECLIN		

Summary - Maximum Sizes (Approx.) of Individual Breakwater Pontoons

Manufacturers	Facility and/or Equipment for Launching and Lifting	Max. Effective	Max. Effective Length for 25 ft.	Max. Effective Length for 12
		Capacities (kip)	Wide Float (ft.)	ft. Wide Float (ft.)
Concrete Tech.	Graving Dock	802	200	200
Concrete Tech.	Precast Plant	120	25	50
Bellingham Marine	150 ton Travel Lift	250	50	100
Bellingham Marine	Precast Plant Crane	120	25	50
Manson Construction	Submersible Ocean Barge	642	160	160

728 134th Street SW Suite 200 Everett, WA 98204 Ph: 425-741-3800 Fax: 425-741-3900

Project #: 242019.018 POM BW Replacement

FLOAT DIMENSIONS, FREE BOARD, & DRAFT
BW float: 100' long 25 ft wide concrete float with two 50' long individual pontoons connected
wall thickness, $b_w := 4$ in width, $b := 25$ ft depth, $h = 66$ in length, $l_f := 100$ ft
top slab thickenss, $h_{ts} := 5 \text{ in}$ bottom slab thickenss, $h_{bs} := b_w$
top slab volume, $V_{ts} := b \cdot h_{ts} \cdot l_f = 1.042 \times 10^3 \cdot ft^3$
bottom slab volume, $V_{bs} := b \cdot h_{bs} \cdot l_f = 833.333 \cdot ft^3$
side & mid wall volume, $V_{ws} := 3 \cdot (h - h_{ts} - h_{bs}) \cdot b_w \cdot l_f = 475 \cdot ft^3$
end wall volume, $V_{ew} := 4 \cdot (b - 3 \cdot b_w) \cdot (h - h_{ts} - h_{bs}) \cdot b_w = 152 \cdot ft^3$
notch wall volume, $V_{nw} := 2(4.5ft + 4.5ft) \cdot (h - h_{ts} - h_{bs}) \cdot b_w = 28.5 \cdot ft^3$
notch cavity volume, $V_{nc} := 2(4.5 \text{ft} \cdot 4.5 \text{ft}) \cdot b_w = 13.5 \cdot \text{ft}^3$
total concrete volume, $V_{con} := V_{ts} + V_{bs} + V_{ws} + V_{ew} + V_{nw} - V_{nc} = 2.517 \times 10^3 \cdot \text{ft}^3$
unit weight of seawater, $\gamma_w := 63.8 \text{ pcf}$ unit weight of concrete, $\gamma_c := 155 \text{ pcf}$
unit weight of foam, $\gamma_{ps} := 1 pcf$
volume of foam filled, $V_{foam} := (b - 3 \cdot b_w) \cdot (h - h_{ts} - h_{bs}) \cdot (l_f - 2b_w) = 1.132 \times 10^4 \cdot \text{ft}^3$
weight of breakwater 100' long pontoon unit incl addtional DL & ballast (say additional 50%),
$W_{bw} := (\gamma_c \cdot V_{con} + \gamma_{ps} \cdot V_{foam}) = 401.459 \cdot kip \qquad 1.5 \cdot W_{bw} = 602.188 \cdot kip$

728 134th Street SW Suite 200 Everett, WA 98204 Ph: 425-741-3800 Fax: 425-741-3900

Project #: 242019.018 POM BW Replacement

Sheet 2 of 2 Design by WWA 9/30/2019 Checked by 2 of 2 Date

live load (uniformly distributed - PIANC Marina Design Guideline 149 Part IV),

$$LL := 5.0 \frac{kN}{m^2} = 104.427 \cdot psf$$

uniformly distributed live load for walkway over 10 meter can be reduced as follows:

length of walkway (m), L_w := 175

 $p_{v} := 2.0 \frac{kN}{m^{2}} + \left(\frac{120}{L_{w} + 30}\right) \frac{kN}{m^{2}} = 2.585 \cdot \frac{kN}{m^{2}}$ Eqn 1 - PIANC Marina Design Guideline 149 Part IV, 9.3.1

 $p_V = 53.996 \cdot psf$

use 60 psf live load

 $W_{ll} := 60psf \cdot b \cdot l_f = 150 \cdot kip$

draft under DL only, $dr_{dl} := \frac{1.5W_{bw}}{\left[b \cdot l_{f} - 2 \cdot (4.5ft)^{2}\right] \cdot \gamma_{w}} = 46.052 \cdot in$

free boards, $fb_{dl} := h - dr_{dl} = 19.948 \cdot in$

draft, under DL + LL $dr_{ll} := \frac{1.5W_{bw} + W_{ll}}{\left[b \cdot l_{f} - 2 \cdot (4.5ft)^{2}\right] \cdot \gamma_{w}} = 57.523 \cdot in$

$$fb_{11} := h - dr_{11} = 8.477 \cdot in$$

5.00

728 134th Street SW Suite 200 Everett, WA 98204 Ph: 425-741-3800 Fax: 425-741-3900

Project #: 242017.013 POM BW Replacement

FLOAT DIMENSIONS, FREE BOARD, & DRAFT BW float: 110' long 20 ft wide concrete float with two 50' long individual pontoons connected width, b := 20ft depth, h := 69inlength, $l_f := 110 ft$ wall thickness, $b_w := 4$ in top slab thickenss, $h_{ts} := 5 in$ bottom slab thickenss, $h_{bs} := b_{w}$ top slab volume, $V_{ts} := b \cdot h_{ts} \cdot l_f = 916.667 \cdot ft^3$ bottom slab volume, $V_{hs} := b \cdot h_{hs} \cdot l_f = 733.333 \cdot ft^3$ side & mid wall volume, $V_{ws} := 3 \cdot (h - h_{ts} - h_{bs}) \cdot b_w \cdot l_f = 550 \cdot ft^3$ end wall volume, $V_{ew} := 4 \cdot (b - 3 \cdot b_w) \cdot (h - h_{ts} - h_{bs}) \cdot b_w = 126.667 \cdot ft^3$ notch wall volume, $V_{nw} := 2(4.5ft + 4.5ft) \cdot (h - h_{ts} - h_{bs}) \cdot b_w = 30 \cdot ft^3$ notch cavity volume, $V_{nc} := 2(4.5 \text{ft} \cdot 4.5 \text{ft}) \cdot b_w = 13.5 \cdot \text{ft}^3$ total concrete volume, $V_{con} := V_{ts} + V_{bs} + V_{ws} + V_{ew} + V_{nw} - V_{nc} = 2.343 \times 10^3 \cdot \text{ft}^3$ unit weight of seawater, $\gamma_w := 63.8 \text{pcf}$ unit weight of concrete, $\gamma_c := 155 \text{pcf}$ unit weight of foam, $\gamma_{ps} := 1pcf$ $V_{\text{foam}} := (b - 3 \cdot b_{\text{w}}) \cdot (h - h_{\text{ts}} - h_{\text{bs}}) \cdot (l_{\text{f}} - 2b_{\text{w}}) = 1.039 \times 10^4 \cdot \text{ft}^3$ volume of foam filled, weight of breakwater 100' long pontoon unit incl additional DL & balast (say additional 50%), $W_{bw} := \left(\gamma_{c} \cdot V_{con} + \gamma_{ps} \cdot V_{foam}\right) = 373.577 \cdot kip$ $1.5 \cdot W_{bw} = 560.366 \cdot kip$

728 134th Street SW Suite 200 Everett, WA 98204 Ph: 425-741-3800 Fax: 425-741-3900

Project #: 242017.013 POM BW Replacement

Sheet 2 of 2 Design by WWA 10/7/2019 Checked by 2 of 2 Date

live load (uniformly distributed - PIANC Marina Design Guideline 149 Part IV),

LL :=
$$5.0 \frac{\text{kN}}{\text{m}^2} = 104.427 \cdot \text{psf}$$

uniformly distributed live load for walkway over 10 meter can be reduced as follows:

length of walkway (m), $L_{w} := 175$

 $p_{v} := 2.0 \frac{kN}{m^{2}} + \left(\frac{120}{L_{w} + 30}\right) \frac{kN}{m^{2}} = 2.585 \cdot \frac{kN}{m^{2}}$ Eqn 1 - PIANC Marina Design Guideline 149 Part IV, 9.3.1

p_V = 53.996 ⋅ psf

use 60 psf live load

 $W_{ll} := 60psf \cdot b \cdot l_f = 132 \cdot kip$

draft under DL only, $dr_{dl} := \frac{1.5W_{bw}}{\left\lceil b \cdot l_{f} - 2 \cdot (4.5ft)^{2} \right\rceil \cdot \gamma_{w}} = 48.807 \cdot in$

free boards, $fb_{dl} := h - dr_{dl} = 20.193 \cdot in$

draft, under DL + LL $dr_{ll} := \frac{1.5W_{bw} + W_{ll}}{\left[b \cdot l_{f} - 2 \cdot (4.5ft)^{2}\right] \cdot \gamma_{w}} = 60.304 \cdot in$

 $fb_{11} := h - dr_{11} = 8.696 \cdot in$

728 134th Street SW Suite 200 Everett, WA 98204 Ph: 425-741-3800 Fax: 425-741-3900

Project #: 242017.013 POM BW Replacement

FLOAT DIMENSIONS, FREE BOARD, & DRAFT 60' BW float: 120' long 12 ft wide concrete float with two 50' long individual pontoons connected depth, width, b := 12ft h := 69in length, $l_f := 120 ft$ wall thickness, $b_w := 4$ in top slab thickenss, $h_{ts} := 5 in$ bottom slab thickenss, $h_{bs} := b_w$ top slab volume, $V_{ts} := b \cdot h_{ts} \cdot l_f = 600 \cdot ft^3$ bottom slab volume, $V_{hs} := b \cdot h_{hs} \cdot l_f = 480 \cdot ft^3$ side wall volume, $V_{ws} := 2 \cdot (h - h_{ts} - h_{bs}) \cdot b_w \cdot l_f = 400 \cdot ft^3$ end wall volume, $V_{ew} := 4 \cdot (b - 2 \cdot b_w) \cdot (h - h_{ts} - h_{bs}) \cdot b_w = 75.556 \cdot t^3$ notch wall volume, $V_{nw} := (4.5ft + 4.5ft) \cdot (h - h_{ts} - h_{bs}) \cdot b_w = 15 \cdot ft^3$ notch cavity volume, $V_{nc} := (4.5 \text{ft} \cdot 4.5 \text{ft}) \cdot b_w = 6.75 \cdot \text{ft}^3$ total concrete volume, $V_{con} := V_{ts} + V_{bs} + V_{ws} + V_{ew} + V_{nw} - V_{nc} = 1.564 \times 10^3 \cdot \text{ft}^3$ $\gamma_w := 63.8 \text{pcf}$ unit weight of concrete, $\gamma_c := 155 \text{pcf}$ unit weight of seawater, $\gamma_{ps} := 1 pcf$ unit weight of foam, $V_{\text{foam}} := (b - 2 \cdot b_w) \cdot (h - h_{ts} - h_{bs}) \cdot (l_f - 2b_w) = 6.762 \times 10^3 \cdot \text{ft}^3$ volume of foam filled, weight of breakwater 120' long pontoon unit incl additional DL & balast (say additional 50%), $W_{bw} := (\gamma_c \cdot V_{con} + \gamma_{ps} \cdot V_{foam}) = 249.152 \cdot kip \qquad 1.5 \cdot W_{bw} = 373.728 \cdot kip$

728 134th Street SW Suite 200 Everett, WA 98204 Ph: 425-741-3800 Fax: 425-741-3900

Project #: 242017.013 POM BW Replacement

Sheet 2 of 2 Design by WWA 10/7/2019 Checked by 2 of 2 Date

live load (uniformly distributed - PIANC Marina Design Guideline 149 Part IV),

LL :=
$$5.0 \frac{\text{kN}}{\text{m}^2} = 104.427 \cdot \text{psf}$$

uniformly distributed live load for walkway over 10 meter can be reduced as follows:

length of walkway (m), $L_{w} := 175$

 $p_{v} := 2.0 \frac{kN}{m^{2}} + \left(\frac{120}{L_{w} + 30}\right) \frac{kN}{m^{2}} = 2.585 \cdot \frac{kN}{m^{2}}$ Eqn 1 - PIANC Marina Design Guideline 149 Part IV, 9.3.1

 $p_v = 53.996 \cdot psf$

use 60 psf live load

$$W_{ll} := 60psf \cdot (b \cdot l_f - 4.5^2 ft^2) = 85.185 \cdot kip$$

draft under DL only, dr

$$\tau_{\rm dl} \coloneqq \frac{1.5 \,\mathrm{w}_{\rm bw}}{\left(\mathrm{b} \cdot \mathrm{l}_{\rm f} - 4.5^2 \mathrm{ft}^2\right) \cdot \gamma_{\rm W}} = 49.511 \cdot \mathrm{in}$$

free boards, $fb_{dl} := h - dr_{dl} = 19.489 \cdot in$

draft,under DL + LL $dr_{ll} := \frac{1.5W_{bw} + W_{ll}}{\left(b \cdot l_f - 4.5^2 ft^2\right) \cdot \gamma_w} = 60.797 \cdot in$

 $fb_{11} := h - dr_{11} = 8.203 \cdot in$

Calculations Capacity of Float Guide Piling

728 134th Street SW Suite 200 Everett, WA 98204 Ph: 425-741-3800 Fax: 425-741-3900

POCM BW Project #: 262017.013 Pile Capacity

Sheet 1 of 2 Design by WWA 9/30/2019 Checked by Date

Estimation of Effective Pile Length Parameter, moment of inertia, modulus of elasticity of steel, $E_{e} := 29000$ ksi moment of inertia 30" (1" thk) diameter steel piling, $I_{30} := 9591 \text{in}^4$ $f_{sr} := 20 \frac{lbt}{in^3}$ soil modulus of subgrade reaction for medium dense send, $T_{30} := \int \frac{E_s \cdot I_{30}}{f_{or}}$ Effective pile length parameter, Point of fixity, below top of the layer, $T_{30} = 8.9 \,ft$ $POF_{30} := 1.8T_{30}$ $POF_{30} = 16.02 \, ft$ Estimation of Load Applied on Piling for Large Floats $S_{30} := 639.4 \text{in}^3$ section moduli, yield strength, $F_v := 60$ ksi $M_{n30} := 1.3 \cdot S_{30} \cdot F_v$ $\Omega_p := 1.67$ $M_{a30} := \frac{M_{n30}}{\Omega_{p}} = 2.49 \times 10^{3} \cdot \text{kip} \cdot \text{ft}$ max moment capacity for 30" (1" thk) pile, pile length for -35 MLLW (deep), including point of fixity, highest water elevation, and free board $L_{dp} := (POF_{30} + 35ft + 15ft + 1.5ft) = 67.52ft$ BW length (-35 MLLW), $l_d := 700 \, \text{ft}$ for 25' wide BW pile length for -30 MLLW (intermediate), including point of fixity, highest water elevation, and free board $L_{ip} := POF_{30} + 30ft + 15ft + 1.5ft$

Last Saved: 9/25/2019 12:18 PM \reidmiddleton.com\host\Doc\24Wf\2019\018 Art Anderson P Orchard BW Concept\Design & Calcs\

728 134th Street SW Suite 200 Everett, WA 98204 Ph: 425-741-3800 Fax: 425-741-3900 POCM BW Project #: 262017.013 Pile Capacity Sheet 2 of 2 Design by WWA 9/30/2019 Checked by Date

BW length (-30 MLLW), l; := 415ft pile length for -25 MLLW (shallow), including point of fixity, highest water elevation, and free board $L_{sp} := POF_{30} + 25ft + 15ft + 1.5ft$ BW length (-25 MLLW), $l_s := 705 \text{ft}$ environmental load applied on BW float (wind + wave) $P_d := (0.11 + 0.75) \text{klf} \cdot l_d = 602 \cdot \text{kip}$ at -35 MLLW, with consideration of 0.8 for soil spring $0.8P_{d} = 481.6 \cdot kip$ $M_d := 0.8P_d \cdot L_{dp} = 3.25 \times 10^4 \cdot \text{kip} \cdot \text{ft}$ total moment applied on piling along 700 ft long float at -35 MLLW. $\frac{M_{d}}{14} = 2.32 \times 10^{3} \text{ kip} \cdot \text{ft}$ < $M_{a30} = 2.49 \times 10^{3} \text{ kip} \cdot \text{ft}$ OK moment applied @ each piling, environmental load applied on BW float (wind + wave) $P_i := (0.11 + 0.75) \text{klf} \cdot l_i = 356.9 \cdot \text{kip}$ at -30 MLLW, $M_i := 0.8P_i \cdot L_{in} = 1.79 \times 10^4 \text{ kip} \cdot \text{ft}$ total moment applied on piling along 415 ft long float at -- 30 MLLW, $\frac{M_i}{R} = 2.23 \times 10^3 \cdot \text{kip} \cdot \text{ft}$ < $M_{a30} = 2.49 \times 10^3 \cdot \text{kip} \cdot \text{ft}$ OK moment applied @ each piling, environmental load applied on BW float (wind + wave) $P_s := (0.11 + 0.75) \text{klf} \cdot l_s = 606.3 \cdot \text{kip}$ at -25 MLLW, $M_s := 0.8P_s \cdot L_{sp} = 2.79 \times 10^4 \cdot \text{kip} \cdot \text{ft}$ total moment applied on piling along 680 ft long float at -25 MLLW. $\frac{M_s}{12} = 2.33 \times 10^3 \text{ kip} \text{ ft}$ < $M_{a30} = 2.49 \times 10^3 \text{ kip} \text{ ft}$ OK moment applied @ each piling,

Last Saved: 9/25/2019 12:18 PM

\\reidmiddleton.com\host\Doc\24Wf\2019\018 Art Anderson P Orchard BW Concept\Design & Calcs\

Calculations Deck Capacity

art anderson Associates Sheet _____ of _____ Client ____ Project Port Orchard BW Design by WWA ReidMiddleton Date 09/30/2 • 19 www.reidmiddleton.com Checked by wwA Project No. 242019, 018 Date

- Deck Capacity DL for 4" top slab. ([uniform midth) 155 pcf × 0.33 × 1' ≈ 51,2 plf DL for 5" top stab (I' Uniform Width) 155 pcf x 0.42 x1' ~ 65.1 plf LL = 60 psf60 psf x 1 = 6 plf Combination ! Wa=1.4DL + 1.6LL = 1.4 × 51.2 plt + 1.6×60 plt = 169.7 plf (4" THK) (5" THE) ! WU = 11 11 = 1.4× 65.1 pet + 1.6× 60 pet = 187.1 pet Span (conservative) = 12'- 0.33' = 11,67ft $M_{u} = \frac{w_{u} l_{n}}{2} = \frac{0.168 k \times 11.67^{2}}{8} = 2.86 \text{ K-ft} = 34, 32 \text{ K-in}$ $M_{u} = \frac{0.187 \, k \times 11.67^2}{R} = 3.18 \, k-St = 38.2 \, k-in$

Flextural strength of concrete

I ICAU	and strength of concrete			
			ACI Code:	
Given:	Concrete Strength, fc:	5000 psi	7 12 - Shrinkage and temperature reinforcement	
	Steel Strength, f _y :	60 ksi	10.5 - Minimum reinforcement of flexural members	
	Element Size:			
	width, b:	12 in.		9.2
	Depth, d:	2 in.	for 4" thk concrete slab	
Compu	utina:			
	te section area,		$A_{c} = 24 \text{ in.}^{2}$	
			$\beta_1 = 0.8$	
			f _r = 530.3301 psi	
steel ra	atio for balanced conditions,		$\rho_{\rm b} = 3.3537\%$	
	nt of inertia of the gross concrete section		$I_{g} = 64 \text{ in.}^{4}$	
			y _t = 2 in.	
Critaria				
Criteria		0.54500/		

Maximum steel ratio:	0.75ρ _b =	2.5153%		
Minimum steel ratio: ACI (10-3)	200/f _y =	0.3333%	or	$0.3536\%~(ho_{min~for~shrinkage \& temperature}:0.14\%)$
cracking moment:	$M_{cr} = 1$	6970.56275 (lb	o-in.), or	16.97056 (k-in.)

Flextural Capacity

U

ρ	As	а	с	M _n	φM _n	Required N	quired Number of Bars by entering ba			
	(in. ²)	(in.)	(kips)	(k-in)	(k-in)	5	6	7	8	
0.3333%	0.080	0.094	4.800	9.37	8.44	0.3	0.2	0.1	0.1	
0.4333%	0.104	0.122	6.240	12.10	10.89	0.3	0.2	0.2	0.1	
0.5333%	0.128	0.151	7.680	14.78	13.30	0.4	0.3	0.2	0.2	
0.6333%	0.152	0.179	9.120	17.42	15.68	0.5	0.3	0.3	0.2	
0.7333%	0.176	0.207	10.560	20.03	18.02	0.6	0.4	0.3	0.2	
0.8333%	0.200	0.235	12.000	22.59	20.33	0.7	0.5	0.3	0.3	
0.9333%	0.224	0.264	13.440	25.11	22.60	0.7	0.5	0.4	0.3	
1.0333%	0.248	0.292	14.880	27.59	24.83	0.8	0.6	0.4	0.3	
1.1333%	0.272	0.320	16.320	30.03	27.03	0.9	0.6	0.5	0.3	
1.2333%	0.296	0.348	17.760	32.43	29.18	1.0	0.7	0.5	0.4	
1.3333%	0.320	0.376	19.200	34.79	31.31	1.0	0.7	0.5	0.4	
1.4333%	0.344	0.405	20.640	37.10	33.39	1.1	0.8	0.6	0.4	
1.5333%	0.368	0.433	22.080	39.38	35.44	1.2	0.8	0.6	0.5	
1.6333%	0.392	0.461	23.520	41.62	37.45	1.3	0.9	0.7	0.5	
1.7333%	0.416	0.489	24.960	43.81	39.43	1.4	0.9	0.7	0.5	
1.8333%	0.440	0.518	26.400	45.97	41.37	1.4	1.0	0.7	0.6	
1.9333%	0.464	0.546	27.840	48.08	43.27	1.5	1.1	0.8	0.6	
2.0333%	0.488	0.574	29.280	50.15	45.14	1.6	1.1	0.8	0.6	
2.1333%	0.512	0.602	30.720	52.19	46.97	1.7	1.2	0.9	0.7	
2.2333%	0.536	0.631	32.160	54.18	48.76	1.7	1.2	0.9	0.7	
Given p =	2.515%									
2.5153%	0.604	0.710	36.220	59.58	53.62	2.0	1.4	1.0	0.8	
Given $\rho =$	0.300%									
0.3000%	0.072	0.085	4.320	8.46	7.61	0.2	0.2	0.1	0.1	

Flextural strength of concrete

Tlextural strength of concrete		
		ACI Code:
Given: Concrete Strength, fc:	5000 psi	7.12 - Shrinkage and temperature reinforcement
Steel Strength, f.:	60 ksi	10.5 - Minimum reinforcement of flexural members
Element Size:		
width, b:	12 in.	
Depth, d:	3 in.	for 5" thk concrete slab
Computing		
		$A = 36 in^2$
concrete section area,		
steel ratio for balanced conditions,		
moment of inertia of the gross concrete section		I ₉ = 125 in. ⁴
		$y_t = 2.5$ in.
Element Size: width, b: Depth, d: Computing: concrete section area, steel ratio for balanced conditions,	12 in. 3 in.	for 5" thk concrete slab $A_c = 36 \text{ in.}^2$ $\beta_1 = 0.8$ $f_r = 530.3301 \text{ psi}$ $\rho_b = 3.3537\%$ $I_g = 125 \text{ in.}^4$

Maximum steel ratio:		0.75ρ _b =	2.5153%		
Minimum steel ratio: A	ACI (10-3)	200/f _y =	0.3333%	or	0.3536% ($\rho_{min \ for \ shrinkage \& \ lemperature: 0.14\%$)
cracking moment:		$M_{cr} = 26$	6516.50429 (lb·	-in.), or	26.5165 (k-in.)

Flextural Capacity

ρ	As	а	С	Mn	φM _n	Required N	ired Number of Bars by entering b				Required Number of Ba	ring bar #
	(in. ²)	(in.)	(kips)	(k-in)	(k-in)	5	6	7	8			
0.3333%	0.120	0.141	7.200	21.09	18.98	0.4	0.3	0.2	0.2			
0.4333%	0.156	0.184	9.360	27.22	24.50	0.5	0.4	0.3	0.2			
0.5333%	0.192	0.226	11.520	33.26	29.93	0.6	0.4	0.3	0.2			
0.6333%	0.228	0.268	13.680	39.21	35.28	0.7	0.5	0.4	0.3			
0.7333%	0.264	0.311	15.840	45.06	40.55	0.9	0.6	0.4	0.3			
0.8333%	0.300	0.353	18.000	50.82	45.74	1.0	0.7	0.5	0.4			
0.9333%	0.336	0.395	20.160	56.50	50.85	1.1	0.8	0.6	0.4			
1.0333%	0.372	0.438	22.320	62.08	55.87	1.2	0.8	0.6	0.5			
1.1333%	0.408	0.480	24.480	67.56	60.81	1.3	0.9	0.7	0.5			
1.2333%	0.444	0.522	26.640	72.96	65.67	1.4	1.0	0.7	0.6			
1.3333%	0.480	0.565	28.800	78.27	70.44	1.6	1.1	0.8	0.6			
1.4333%	0.516	0.607	30.960	83.48	75.13	1.7	1.2	0.9	0.7			
1.5333%	0.552	0.649	33.120	88.61	79.75	1.8	1.3	0.9	0.7			
1.6333%	0.588	0.692	35.280	93.64	84.27	1.9	1.3	1.0	0.7			
1.7333%	0.624	0.734	37.440	98.58	88.72	2.0	1.4	1.0	0.8			
1.8333%	0.660	0.776	39.600	103.43	93.08	2.2	1.5	1.1	0.8			
1.9333%	0.696	0.819	41.760	108.18	97.36	2.3	1.6	1.2	0.9			
2.0333%	0.732	0.861	43.920	112.85	101.56	2.4	1.7	1.2	0.9			
2.1333%	0.768	0.904	46.080	117.42	105.68	2.5	1.7	1.3	1.0			
2.2333%	0.804	0.946	48.240	121.91	109.71	2.6	1.8	1.3	1.0			
Given ρ=	2.515%											
2.5153%	0.906	1.065	54.331	134.05	120.65	3.0	2.1	1.5	1.2			
Given p =	0.300%				•							
0.3000%	0.108	0.127	6.480	19.03	17.13	0.4	0.2	0.2	0.1			

Calculations Wave Transmission Coefficients

 \sim

Transmission conefficient - Simplified Analytical Methods for Exiting Port **Orchard Breakwater (North & East)**

floating breakwater dimension: 12' wide x 3' deep and 15" freeboard

Based on Macagno's analytical formula, (1953)

linear wave theory used

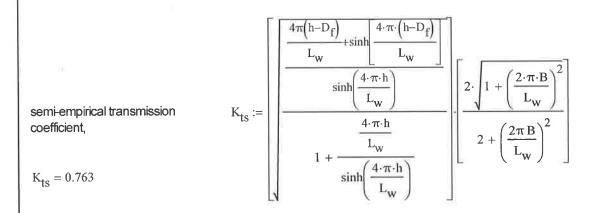
wave period $T_w := 3.5 \text{sec}_*$ gravity, $g = 32.174 \frac{\text{ft}}{\text{s}^2}$ significant wave height, $H_s := 3.1 \cdot \text{ft}_*$

water depth, $h := 35 ft_*$ draft, $D_f := 1.75 \cdot ft_*$

wave length, $L_0 := \frac{g \cdot T_W^2}{2\pi} = 62.728 \, \text{ft}$

 $\frac{1}{25} = 0.04 < \frac{h}{L_0} = 0.558 < \frac{1}{2}$ ---- transitional water

$$L_{w} := \frac{g \cdot T_{w}^{2}}{2 \cdot \pi} \cdot \tanh\left(\frac{2\pi \cdot h}{L_{0}}\right) = 62.615 \text{ ft}$$


$$\sigma := \frac{2 \cdot \pi}{T_{W}} = 1.795 \frac{1}{s}$$

wave number, $k := \frac{2 \cdot \pi}{L_w} = 0.1 \frac{1}{ft}$ mass density of seawater

width of floating body, $B := 12 \cdot ft_*$

Transmission coefficient,
$$K_{tm} := \frac{1}{\sqrt{1 + \left(\frac{\pi \cdot B \cdot \sinh\left(\frac{2\pi h}{L_{w}}\right)}{L_{w} \cdot \cosh\left(2\pi \frac{h - D_{f}}{L_{w}}\right)}\right)^{2}}} = 0.813$$

Based on studies from Cox and Simpson, (1989 and 1993) -- from Floating Wave Attenuator Study for Bremerton Marina, Pacific International Engineering, 2003

adjusted transmission coefficient by a regression analysis of theoratical and observed coefficient,

$$K_{ta} := 0.9631 \cdot K_{ts} = 0.735$$

average,
$$\frac{K_{tm} + K_{ta}}{2} = 0.774$$

2

Ü

Last Saved: 10/4/2019 5:53 PM H:\24Wf\2019\018 Art Anderson

Based on studies from Cox and Simpson, (1989 and 1993) – from Floating Wave Attenuator Study for Bremerton Marina, Pacific International Engineering, 2003

coefficient, $K_{ts} = 0.596$ $I = \frac{4 \cdot \pi \cdot h}{L_{w}}$ $I = \frac{4 \cdot \pi \cdot h}{\sinh\left(\frac{4 \cdot \pi \cdot h}{L_{w}}\right)}$ $I = \frac{2 + \left(\frac{2\pi B}{L_{w}}\right)^{2}}{\sinh\left(\frac{4 \cdot \pi \cdot h}{L_{w}}\right)}$	semi-empirical transmission coefficient, $K_{ts} = 0.596$	K _{ts} :=	$\begin{bmatrix} 1 + \frac{L_{w}}{(4 \cdot \pi \cdot h)} \end{bmatrix} \begin{bmatrix} 2 + (\overline{L_{w}}) \end{bmatrix}$
--	---	--------------------	--

adjusted transmission coefficient by a regression analysis of theoratical and observed coefficient,

 $K_{ta} := 0.9631 \cdot K_{ts} = 0.574$

average, $\frac{K_{tm} + K_{ta}}{2} = 0.655$

Last Saved: 10/4/2019 5:53 PM H:\24Wf\2019\018 Art Anderson

Transmission conefficient - Simplified Analytical Methods for New 20' Wide Port Orchard Breakwater (North & East)

floating breakwater dimension: 20' wide x 5.75' deep and 18" freeboard

Based on Macagno's analytical formula, (1953)

linear wave theory used

wave period $T_w := 3.5 \text{sec}_*$ gravity, $g = 32.174 \frac{\text{ft}}{\text{s}^2}$ significant wave height, $H_s := 3.1 \cdot \text{ft}_*$

water depth, $h := 35 ft_*$ draft, $D_f := 4.25 \cdot ft_*$

wave length, $L_0 := \frac{g \cdot T_W^2}{2\pi} = 62.728 \, \mathrm{ft}$

 $\frac{1}{25} = 0.04 < \frac{h}{L_0} = 0.558 < \frac{1}{2}$ ---- transitional water

$$L_{w} := \frac{g \cdot T_{w}^{2}}{2 \cdot \pi} \cdot \tanh\left(\frac{2\pi \cdot h}{L_{0}}\right) = 62.615 \, \text{ft}$$

$$\sigma := \frac{2 \cdot \pi}{T_{w}} = 1.795 \frac{1}{s}$$

wave number, $k := \frac{2 \cdot \pi}{L_{_{\rm TV}}} = 0.1 \frac{1}{ft}$ mass density of seawater

width of floating body, $B := 20 \cdot ft_*$

 $K_{tm} := \frac{1}{\left[1 + \left(\frac{\pi \cdot B \cdot \sinh\left(\frac{2\pi h}{L_{w}}\right)}{1 + \left(\frac{\pi \cdot B \cdot h}{L_{w}}\right)}\right)}\right]^{2}}}\right]}$ Transmission coefficient, = 0.546

> Last Saved: 10/4/2019 5:56 PM H:\24Wf\2019\018 Art Anderson

Based on studies from Cox and Simpson, (1989 and 1993) -- from Floating Wave Attenuator Study for Bremerton Marina, Pacific International Engineering, 2003

semi-empirical transmission	K _{ts} :=	$\frac{\frac{4\pi(h-D_{f})}{L_{w}}+\sinh\left[\frac{4\cdot\pi\cdot(h-D_{f})}{L_{w}}\right]}{\sinh\left(\frac{4\cdot\pi\cdot h}{L_{w}}\right)} = \left[\frac{2\cdot\sqrt{1+\left(\frac{2\cdot\pi\cdot B}{L_{w}}\right)^{2}}}{(2-\pi)^{2}}\right]$
coefficient, $K_{ts} = 0.489$		$\int_{V} \frac{\frac{4 \cdot \pi \cdot n}{L_{W}}}{\sinh\left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)} = \int_{V} 2 \cdot \left(\frac{2\pi B}{L_{W}}\right)^{2} \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(\frac{4 \cdot \pi \cdot h}{L_{W}}\right)^{2} = \int_{V} \frac{1}{2\pi B} \left(4 \cdot \pi $

adjusted transmission coefficient by a regression analysis of theoratical and observed coefficient,

 $K_{ta} := 0.9631 \cdot K_{ts} = 0.471$

average, $\frac{K_{tm} + K_{ta}}{2} = 0.509$

Last Saved: 10/4/2019 5:56 PM H:\24Wf\2019\018 Art Anderson

Transmission conefficient - Simplified Analytical Methods for New 25' Wide Port Orchard Breakwater (North & East)

floating breakwater dimension: 25' wide x 5.5' deep and 18" freeboard

Based on Macagno's analytical formula, (1953)

linear wave theory used

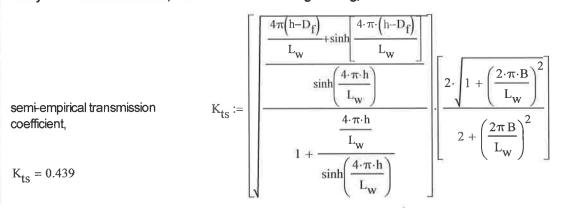
wave period $T_w := 3.5 \text{sec}_*$ gravity, $g = 32.174 \frac{\text{ft}}{\text{s}^2}$ significant wave height, $H_s := 3.1 \cdot \text{ft}_*$

water depth, $h := 35 ft_*$ draft, $D_f := 4 \cdot ft_*$

wave length, $L_0 := \frac{g \cdot T_W^2}{2\pi} = 62.728 \, ft$

$$\frac{1}{25} = 0.04 \le \frac{h}{L_0} = 0.558 \le \frac{1}{2}$$
 ----- transitional water

$$L_{w} := \frac{g \cdot T_{w}^{2}}{2 \cdot \pi} \cdot \tanh\left(\frac{2\pi \cdot h}{L_{0}}\right) = 62.615 \text{ ft}$$


$$\sigma := \frac{2 \cdot \pi}{T_{\rm W}} = 1.795 \frac{1}{\rm s}$$

wave number, $k:=\frac{2\cdot\pi}{L_w}=0.1\frac{1}{ft}$ mass density of seawater

width of floating body, $B := 25 \cdot ft_*$

Transmission coefficient,
$$K_{tm} := \frac{1}{\sqrt{1 + \left(\frac{\pi \cdot B \cdot \sinh\left(\frac{2\pi h}{L_{w}}\right)}{L_{w} \cdot \cosh\left(2\pi \frac{h - D_{f}}{L_{w}}\right)}\right)^{2}}} = 0.472$$

Based on studies from Cox and Simpson, (1989 and 1993) -- from Floating Wave Attenuator Study for Bremerton Marina, Pacific International Engineering, 2003

adjusted transmission coefficient by a regression analysis of theoratical and observed coefficient,

 $K_{ta} := 0.9631 \cdot K_{ts} = 0.422$

average, $\frac{K_{tm} + K_{ta}}{2} = 0.447$

Breakwaters	Transmission Coefficient, Kt	Transmitted Wave Height (ft.) inside Marina
Existing – 12' wide x 3' deep	0.77	2.4′
New $-12'$ wide x 5.75' deep	0.66	2.0'
New – 20' wide x 5.75' deep	0.51	1.6′
New $-25'$ wide $\times 5.5'$ deep	0.45	1.4′

Table : Breakwater Performance for Wave Height 3.1 ft.

ALTERNATIVE COMPARISON ART ANDERSON ASSOCIATES

Comparison Item	Alt #0 - 12' Wide, Thinner Walls, Cable Moored (New)	Alt #1 - 12' Wide, Thinner Walls, Cable Moored (Use 75% Existing)	Alt #2 - 12' Wide, Thicker Walls, Cable Moored (New)	Alt #3 - 12' Wide, Thicker Walls, Interstitial Guide Piles (1 side)	Alt #4 - 12' Wide, Thinner Walls, Interstitial Guide Piles (1 side)	Alt #5 - 25' Wide, Thicker Walls, Interstitial Guide Piles (both sides)	Alt #6 - 25' Wide, Thicker Walls, Cable Moored (New)	Alt #7 - 20' Wide, Thicker Walls, Interstitial Guide Piles (both sides)	Alt #8 - 20' Wide, Thicker Walls, Cable Moored (New)
Cross Section	And a second sec								
First Cost	\$14,460,000	\$13,140,000	\$15,710,000	\$15,560,000	\$14,660,000	\$31,620,000	\$32,290,000	\$26,190,000	\$26,850,000
Annual Maint. Cost	\$584,000	\$527,000	\$636,000	\$622,000	\$586,000	\$1,265,000	\$1,300,000	\$1,048,000	\$1,083,000
Life Cycle	35	0	50	50	30	50	50	50	50
Benefits - 1	Low First and Maint. Cost	Lowest First Cost	Low First and Maint. Cost	Low First and Maint. Cost	Low First and Maint. Cost	17' of Useable Deck Space at Piles	Greatest Deck Surface Available	11' of Useable Deck Space at Piles	19' of Useable Deck Space at Piles
Benefits - 2	Moderate Life Cycle	-	High Life Cycle	High Life Cycle	Moderate Life Cycle	High Life Cycle	High Life Cycle	High Life Cycle	High Life Cycle
Benefits - 3	Good Wave Attentuation	-	Good Wave Attentuation	Good Wave Attentuation		Best Wave Attentuation	Best Wave Attentuation	Excellent Wave Attentuation	Excellent Wave Attentuation
Challenges - 1	Lower Life Cycle	Not Viable	None	Pile Hoops/Piles Interfere w/ Moorings	Pile Hoops/Piles Interfere w/ Moorings	High First and Maint. Cost	Highest First and Maint. Cost	High First and Maint. Cost	High First and Maint. Cost
Challenges - 2	Deck Loading Constraints	-		Pile Hoops/Piles Interfere w/ Events	Pile Hoops/Piles Interfere w/ Events	Increased Permitting and Mitigation Effort and Cost	Increased Permitting and Mitigation Effort and Cost	Increased Permitting and Mitigation Effort and Cost	Increased Permitting and Mitigation Effort and Cost
Challenges - 3	-	-	-	Float Notches make Construction more difficult	Float Notches make Construction more difficult	Float Notches Create Construction and Use Compleities		Float Notches Create Construction and Use Compleities	
Trade-Off Grade	45	40	54	50	48	40	42	43	45